Биометрическая идентификация. Биометрические системы информационной безопасности на основе Intel Perceptual Computing SDK

В последние годы во всем мире наблюдается все возрастающий интерес к методам распознавания и идентификации личности. Основные пути и способы решения этих задач лежат в области разработки биометрических систем. В биометрических системах для распознавания человека используется совокупность биометрических характеристик, основанных на биологических особенностях человеческого тела. В качестве таких биометрических характеристик могут выступать: голос, почерк, отпечатки пальцев, геометрия кисти руки, рисунок сетчатки или радужной оболочки глаза, лицо и ДНК.}

Биометрическая защита более эффективна в сравнении с такими методами, как использование паролей, PIN-кодов, смарт-карт, жетонов (tokens) или технологии PKI (инфраструктура открытых ключей), поскольку биометрия позволяет идентифицировать именно конкретного человека, а не устройство. Традиционные методы защиты не исключают возможности потери или кражи информации, вследствие чего она становится доступной незаконным пользователям. Уникальный биометрический идентификатор, каковым является, например, отпечаток пальца или изображение лица, служит ключом, который невозможно потерять. Биометрическая система безопасности позволяет отказаться от парольной защиты либо служит для ее усиления.

Одной из основных причин, которые существенно повысили значимость автоматической обработки и анализа биометрической информации, явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, то есть не только бесконтактно (дистанционно), но и без специального сотрудничества (специального предъявления биометрических признаков) со стороны идентифицируемых персон.

В настоящее время существует множество методов биометрической аутентификации, которые делятся на две основные группы - статические и динамические методы.

Статические методы биометрической аутентификации основываются на физиологической (статической) характеристике человека, то есть уникальной характеристике, данной ему от рождения и неотъемлемой от него. К этой группе относятся следующие методы аутентификации.

  1. $\textit{По отпечатку пальца.}$ В основе этого метода лежит уникальность для каждого человека рисунка папиллярных узоров на пальцах. Отпечаток пальца, полученный с помощью специального сканера, преобразуется в цифровой код (свертку) и сравнивается с ранее введенным эталоном. Данная технология является самой распространенной по сравнению с другими методами биометрической аутентификации.
  2. $\textit{По форме ладони.}$ Данный метод построен на геометрии кисти руки. С помощью специального устройства, состоящего из камеры и нескольких подсвечивающих диодов (включаясь по очереди, они дают разные проекции ладони), строится трехмерный образ кисти руки, по которому формируется свертка и распознается человек.
  3. $\textit{По расположению вен на лицевой стороне ладони.}$ С помощь инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки, полученная картинка обрабатывается, и по схеме расположения вен формируется цифровая свертка.
  4. $\textit{По сетчатке глаза.}$ Вернее, это способ идентификации по рисунку кровеносных сосудов глазного дна. Для того чтобы этот рисунок стал виден, человеку нужно посмотреть на удаленную световую точку, при этом подсвеченное глазное дно сканируется специальной камерой.
  5. $\textit{По радужной оболочке глаза.}$ Рисунок радужной оболочки глаза также является уникальной характеристикой человека, причем для ее сканирования достаточно портативной камеры со специализированный программным обеспечением, позволяющим захватывать изображение части лица, из которого выделяется изображение глаза, из которого в свою очередь выделяется рисунок радужной оболочки, по которому строится цифровой код для идентификации человека.
  6. $\textit{По изображению или форме лица.}$ В данном методе идентификации строится двумерный или трехмерный образ лица человека. На лице выделяются контуры бровей, глаз, носа, губ и т. д., вычисляется расстояние между ними и строится не просто образ, а еще множество его вариантов на случаи поворота лица, наклона, изменения выражения. Количество образов варьируется в зависимости от целей использования данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т. д.).
  7. $\textit{По термограмме лица}$. В основе данного способа аутентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы используются специальные камеры инфракрасного диапазона. В отличие от предыдущего, этот метод позволяет различать даже близнецов.
  8. $\textit{По ДНК}$. Преимущества данного способы очевидны, однако используемые в настоящее время методы получения и обработки ДНК работают настолько долго, что такие системы используются только для специализированных экспертиз.
  9. $\textit{Другие методы}$. Существуют еще такие уникальные способы - как идентификация по подногтевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела и т. д.

Как видно, большинство биометрических технологий данной группы связано с анализом изображений и реализуется теми или иными методами компьютерного зрения.

Динамические методы биометрической аутентификации основываются на поведенческой (динамической) характеристике человека, то есть построены на особенностях, характерных для подсознательных движений в процессе воспроизведения какого-либо действия. Методы аутентификации этой группы таковы.

1. $\textit{По рукописному почерку.}$ Как правило, для этого вида идентификации человека используется его роспись (иногда написание кодового слова). Цифровой код идентификации формируется в зависимости от необходимой степени защиты и наличия оборудования (графический планшет, экран карманного компьютера Palm и т. д.) двух типов:

По самой росписи, то есть для идентификации используется просто степень совпадения двух картинок;

По росписи и динамическим характеристикам написания, то есть для идентификации строится свертка, в которую входит информация по непосредственно подписи, временн ым характеристикам нанесения росписи и статистическим характеристикам динамики нажима на поверхность.

2. $\textit{По клавиатурному почерку.}$ Метод в целом аналогичен вышеописанному, но вместо росписи используется некое кодовое слово (когда для этого используется личный пароль пользователя, такую аутентификацию называют двухфакторной), и не нужно никакого специального оборудования, кроме стандартной клавиатуры. Основной характеристикой, по которой строится свертка для идентификации, является динамика набора кодового слова.

3. $\textit{По голосу.}$ Это одна из старейших технологий, в настоящее время ее развитие ускорилось, так как предполагается ее широкое использование в построении "интеллектуальных зданий". Существует достаточно много способов построения кода идентификации по голосу, как правило, это различные сочетания частотных и статистических характеристик голоса.

4. Другие методы. Для данной группы методов также описаны только самые распространенные методы, существуют еще такие уникальные способы, как идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т. д.

Краткий исторический обзор.

Проблематика компьютерной биометрической идентификации активно развивается с 1960-х годов. Можно отметить следующие основные вехи этого процесса.

  1. 1960-e - создано биометрическое подразделение NIST, первые попытки автоматизации процесса идентификации личности по следующим биометрическим характеристикам: лицо, голос, отпечатки, подпись.
  2. 1970-е годы - первые автоматизированные системы верификации личности, методы идентификации по форме ладони и динамической подписи.
  3. 1976 - первые мультибиометрические эксперименты.
  4. 1980-е годы - значительно автоматизированные системы и первые методы

полностью автоматической идентификации.

С конца 1980х годов наблюдается всплеск научного и практического интереса к биометрической идентификации, сопровождающийся ростом числа биометрических методов, алгоритмов и технологий, в том числе в СССР и России. Это связано не столько с прикладным интересом к биометрической идентификации, сколько с развитием аппаратных средств, в первую очередь, персональных компьютеров и периферийных устройств для работы с изображениями и аудиосигналами.

В России наиболее важные результаты по биометрической идентификации были получены в работах С. О. Новикова, В. Ю. Гудкова, О. М. Черномордика по распознаванию отпечатков пальцев, Г. А. Кухарева и А. А. Тельных по различным аспектам лицевой биометрии, А. И. Иванова и А. Ю. Малыгина по нейросетевым методам биометрической идентификации, Л. М. Местецкого по распознаванию на основе параметров кисти руки, И. Н. Спиридонова в области стандартизации и биометрической техники, В. И. Дымкова и И. Н. Синицына по автоматизации научных исследований в области биометрической идентификации, С. Л. Бочкарева в области голосовой идентификации личности, О. С. Ушмаева по мультибиометрии.

Сложились научные школы, занимающиеся проблематикой биометрической идентификации. Среди них следует выделить коллективы специалистов, работающих в институтах ИПИ РАН, ГосНИИАС, ИСА РАН, МГУ им. М. В. Ломоносова, МГТУ им. Н. Э. Баумана, ФГУП "ПНИЭИ"; компаниях "Биолинк", "Вокорд Телеком", НПП "Лазерные системы", "Системы Папилон", "Сонда", "СТЭЛ", "Центр речевых технологий".

Среди зарубежных исследований в области биометрической идентификации следует выделить работы таких специалистов, как P. Phillips, P. Grother, А. Jain, N. Ratha, P. Griffin, D. Maio, D. Maltoni, A. Masnfield, J. Wayman, K. Bowyer, M. Turk, A. Pentland, R. Bolle, A. Ross, J. Daugman, D. Zhang, Karr-Ann Toh, O. Tosi, S. Pankanti, C. Soutar, Tieniu Tan, O. Castillo, P. Melin, J. P. Campbell, J. Garofolo, D. Reynolds, L. Flom, J. Kittler, P. Flynn, R. Chellappa, W. Zhao, J.-C. Junqua, J. F. Bonastre, J. Bigun, K. Brady, D. Burr, B. Dorizzi, S. Prabhakar, J. Conell, G. Doddington, J. Ortega-Garcia, A. Bazen, S. Gerez, R. Plamondon, M. Eleccion, M. Fornefett, J. Wegstein, L. Kersta, L. Harmon, A. Fejfar, T. Vetter, A. G. Kersta, L. D. Harmon, B. G. Sherlock, D. M. Monro, M. Kucken.

Существующие биометрические системы.

В настоящее время на рынке предлагается ряд готовых систем и технологий биометрической идентификации и аутентификации личности.

Например, в области распознавания лиц одними из наиболее продвинутых решений являются следующие.

Система ZN-Face компании $\textit{ZN Vision Technologies AG}$ сочетает в себе новейшие компьютерные разработки с системой контроля доступа, основанной на автоматическом распознавании лиц. ZN-камера делает снимок человека, стоящего на рубеже контроля, и проверяет его в считанные доли секунды. Специально разработанный модуль оптического фильтра и функция контроля за живым лицом предотвращает любую попытку обмана путем применения фотографий или масок.

Компьютеризованная база фотоданных ZN-Phantomas может автоматически сравнивать и идентифицировать лица. Для сравнения годится фотография, фоторобот, рисунок или кадр, полученный при видеосъемке. ZN-Phantomas проводит поиск среди сохраненных в памяти изображений, используя систему распознавания лиц, созданную по образу работы человеческого мозга на базе технологии органического видения. Скорость работы системы позволяет просматривать 10 тыс изображений за три минуты. Система может работать со всеми SQL-базами данных, использующими ODBC-протокол (Oracle, Sybase SQL, DB2, Informix).

Система FaceIT компании $\textit{Identix Inc}$ осуществляет распознавание людей при попадании изображения лица в поле зрения видеокамеры высокого разрешения. Разработки фирмы финансируются госдепартаментом США. Данная система проходит апробацию в аэропортах США. В прессе появлялись сообщения, что результаты тестирования нельзя назвать удовлетворительными, однако контракт с фирмой продолжен, и теперь акцент переносится на идентификацию по фотографиям. госдепартамент США собирается обязать гостей США иметь фото установленного образца, дабы облегчить распознавательным программам работу.

Из систем, разработанных в России и СНГ, можно рассмотреть продукцию фирмы $\textit{Asia-Software}$. Фирма предлагает FRS SDK - комплект разработчика, предназначенный для построения информационно-поисковых систем, связанных с распознаванием лиц, и ряд систем идентификации по изображениям лиц. Система базируется на алгоритмах распознавания и сравнения изображений. Основой этих алгоритмов является модифицированный метод анализа принципиальных компонент, заключающийся в вычислении максимально декореллированных коэффициентов, характеризующих входные образы человеческих лиц. На вход системы подается оцифрованное видеоизображение. Специальные алгоритмы определяют наличие изображения лица человека, выделяют его, определяют точное расположение зрачков, производят позиционирование и масштабирование. После этого происходит автоматическое кодирование выделенного изображения лица человека с целью определения основных характерных признаков. Размер полученного массива признаков составляет примерно $300$~байт, что позволяет строить идентификационные системы даже на однокристальных ЭВМ.

Характеристики биометрических систем.

Показателями надежности биометрических систем могут служить вероятности ошибок первого и второго рода. Ошибки первого рода определяют вероятность ложного отказа (FRR, False Rejection Rate) и возникают при отказе в доступе легальному пользователю системы. Ошибки же второго рода показывают вероятность ложного допуска (FAR, False Acceptance Rate) и появляются при предоставлении доступа постороннему лицу. FRR и FAR связаны обратной зависимостью. Современные биометрические системы имеют очень большой разброс этих характеристик.

Биометрическую систему также можно характеризовать уровнем равной вероятности ошибок первого и второго рода (EER, Equal Error Rates) - точкой, в которой вероятность ошибки первого рода равна вероятности ошибки второго рода. На основании EER можно делать выводы об относительных достоинствах и недостатках разных биометрических методов. Чем ниже уровень EER, тем выше качество системы.

Еще один параметр, влияющий на выбор и установку биометрической системы, - пропускная способность. Она характеризует время, которое требуется человеку для взаимодействия с данным биометрическим устройством.

Сортировать и сравнивать описанные выше биометрические методы по показаниям ошибок первого рода очень сложно, так как они сильно разнятся для одних и тех же методов из-за сильной зависимости от оборудования, на котором они реализованы.

По показателям ошибок второго рода общая сортировка методов биометрической аутентификации выглядит так (от лучших к худшим):

  1. радужная оболочка глаза, сетчатка глаза;
  2. отпечаток пальца, термография лица, форма ладони;
  3. форма лица, расположение вен на кисти руки и ладони;
  4. подпись;
  5. клавиатурный почерк;
  6. голос.

Можно сделать вывод, что, с одной стороны, статические методы идентификации существенно лучше динамических, а с другой стороны - существенно дороже.

Текущее состояние технологии и перспективы дальнейших разработок.

В настоящий момент общее состояние биометрических технологий в мире еще нельзя признать удовлетворительным. Скорее можно говорить о биометрии как о быстро развивающейся области исследований и приложений, в которой еще не удалось достичь требуемых показателей. Целый ряд серьезных проверок, проведенных в последнее время, показал недостаточную надежность таких систем.

Например, полицейское управление города Тампа, штат Флорида (США), после двух лет эксплуатации деинсталлировало за бесполезностью программное обеспечение опознания лиц, работавшее совместно с камерами наружного наблюдения. Сеть таких камер позволяла вести надзор за публикой в городском парке развлечений Айбор-сити. Предполагалось, что техника в комплекте с программой для сканирования/опознания лиц, подсоединенной к базе из 30 тысяч известных правонарушителей и сбежавших из дома детей, повысит эффективность работы полиции. Однако за два года система не дала ни единого успешного результата, будь то автоматическое опознание разыскиваемых или арест подозреваемых. Программное обеспечение было предоставлено компанией Identix, одним из ведущих в США поставщиков биометрических технологий опознания по лицу и отпечаткам пальцев.

Известен отчет японского криптографа Цутомо Мацумото, скомпрометировавшего более десятка систем опознания пользователя по отпечатку пальца. Недавно аналогичное обширное исследование было предпринято немецким компьютерным журналом "c"t". Выводы экспертов однозначны: биометрические системы для потребительского рынка пока не достигли того уровня, когда их можно рассматривать в качестве реальной альтернативы традиционным паролям. Так, систему опознания лиц FaceVACS-Logon немецкой фирмы $\textit{Cognitec}$ удается ввести в заблуждение, просто предъявив фотографию зарегистрированного пользователя. Для обмана более изощренного ПО, анализирующего характерные признаки живого человека (мимические движения лица) может быть успешно применен экран ноутбука, на котором демонстрируется видеоклип с записью лица. Несколько сложнее обмануть систему Authenticam BM-ET100 фирмы $\textit{Panasonic}$ для опознания радужной оболочки глаза, поскольку здесь инфракрасные датчики реагируют не только на характерный узор изображения радужки, но и на иную глубину расположения зрачка. Однако, если проделать небольшое отверстие на месте зрачка в фотоснимке глаза, куда при опознании заглядывает другой человек, систему удается обмануть. Что же касается систем опознания пользователя по отпечатку пальца с помощью емкостного сенсора на мышке или клавиатуре, то здесь самым распространенным способом обмана является повторное "оживление" уже имеющегося отпечатка, оставленного зарегистрированным пользователем. Для "реанимации" остаточного отпечатка иногда бывает достаточно просто подышать на сенсор, либо приложить к нему тонкий полиэтиленовый пакет, наполненный водой. Подобные трюки, в частности, весьма удачно опробованы на мышках ID Mouse фирмы $\textit{Siemens}$, оснащенных емкостным сенсором FingerTIP производства $\textit{Infineon}$. Наконец, "искусственный палец", отлитый в парафиновой форме из силикона, позволил исследователям одолеть все шесть протестированных дактилоскопических систем.

Однако, несмотря на общую негативную оценку современного состояния биометрических систем идентификации личности, во всем мире наблюдается тенденция к развитию исследований и разработок в области биометрии. При этом одной из основных тенденций последнего времени является постепенный перенос приоритетов с контактных на бесконтактные методы биометрического распознавания. Причиной этого явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, %то есть не только бесконтактно (дистанционно), но %и без специального сотрудничества (специального предъявления биометрических %признаков) со стороны идентифицируемых персон, в сложных условиях, в группе и в толпе. Созданию таких биометрических систем нового поколения препятствуют ряд специфических проблем, пока еще не имеющих адекватного решения.

Первая группа проблем связана с тем, что системы скрытного наблюдения с целью обеспечения безопасности должны работать в условиях естественного поведения человека, не предъявляющего специально свое лицо и не произносящего заранее известных ключевых фраз. В этом случае еще до решения задачи распознавания необходимо решить задачу обнаружения (определения местоположения, выделения человека в группе), да и сама задача распознавания лица и голоса в неконтролируемых условиях становится существенно сложнее. Вторая группа существующих здесь проблем связана с тем, что в случае задачи обеспечения безопасности (в отличие от задачи обеспечения контроля доступа) нет возможности опереться на сотрудничество идентифицируемой персоны даже на этапе обучения. Поэтому для обучения приходится использовать имеющиеся фрагментарные и разнородные аудио- и видеоматериалы самого различного качества и происхождения. Это еще более усложняет задачу обучения биометрической системы. Наконец, третья группа проблем связана с тем, что получаемые (с учетом перечисленных проблем) вероятности правильного распознавания и ложного обнаружения заданной персоны в естественной обстановке только по лицу или только по голосу оказываются существенно ниже показателей, требуемых для удовлетворительного функционирования ответственных систем обеспечения безопасности и контроля доступа. С этим связана необходимость использовать комплексирование результатов биометрического распознавания, полученного от разных источников информации.

Именно с решением указанных проблем могут быть связаны существенные прорывы в области биометрических технологий в ближайшие годы.

Биометрия в широком и узком смысле.

Таким образом, биометрические технологий идентификации представляют собой быстро развивающееся научно-техническое направление, в результатах которого остро нуждаются такие области применения, как системы охраны и контроля доступа, системы паспортного и визового контроля, системы предупреждения преступлений и идентификации преступников, системы контроля доступа, системы учета и сбора статистики посетителей, системы идентификации удаленных пользователей и пользователей интернета, верификации кредитных карточек, криминалистической экспертизы, контроля времени посещения на предприятиях и т. д.

Помимо описанных биометрических технологий аутентификации, область "биометрии в широком смысле" включает также ряд приложений, связанных с выделением и измерением различных биологических характеристик человеческого тела, жестов, движений и т. п., предназначенных не для персональной идентификации, а для использования в спортивных, медицинских, телекоммуникационных, развлекательных и других целях.

Эта статья в какой-то мере является продолжением , а в какой-то её приквэлом. Здесь я расскажу про основы построения любой биометрической системы и про то, что осталось за кадром прошлой статьи, но обсуждалось в комментариях. Акцент сделан не на сами биометрические системы, а на их принципах и области действия.
Тем, кто не читал статью, или уже забыл - советую просмотреть что такое FAR и FRR, так как эти понятия будут использоваться и здесь.

Общие понятия

Любая аутентификация человека строиться на трёх традиционных принципах:

1) По собственности . К собственности может относиться пропуск, пластиковая карта, ключ или общегражданские документы.
2) По знаниям . К знаниям относятся пароли, коды или информация (например девичья фамилия матери).
3) По биометрическим характеристикам . Подробнее о том, какие бывают биометрические характеристики я говорил в предыдущей статье.

Эти три принципа как могут использоваться по отдельности, так и использоваться в группах. Эта методология и порождает два основных направления биометрии.

Верификация

Верификацией называется подтверждение личности человека через биометрический признак, где первичная аутентификация прошла по одному из первых двух методов, указанных выше. Простейшим верификатором можно назвать пограничника, производящего верификацию вашего лица с вашим паспортом. Верификации подразумевает значительно большую надёжность системы. Вероятность того, что система пропустит нарушителя, не применяющего средства преодоления равна FAR используемого биометрического метода. Даже для самых слабых биометрических систем эта вероятность ничтожно мала. Основными минусами верификации являются два пункта. Первый - человеку требуется носить с собой документ или помнить пароль системы. Всегда существует проблема потери или забывания информации. Так же верификация принципиально невозможна для скрытной аутентификации.

Работу системы доступа, основанной на биометрической верификации можно представить следующим способом:

Идентификация

Биометрической идентификацией называется такое использование биометрического признака, при котором не требуется дополнительной информации. Поиск объекта осуществляется по всей базе данных и не требует предварительного ключа. Понятно, что основным минусом этого является то, что чем больше человек в базе, тем больше вероятность ложного доступа произвольного человека. В прошлой статье проводились оценки вероятности такого доступа при проектировании систем. Например системы по пальцам дают возможность содержать базу не более 300 человек, по глазам не более 3000. Плюс идентификации - все ключи всегда будут с вами, не нужно ни паролей, ни карточек.

Скрытная идентификация

В отличие от верификации идентификация может быть скрытной для человека. Как она возможна и стоит ли её бояться? Попробую вкратце рассказать те мысли, которые бытуют среди людей занимающихся биометрией. В прошлой статье эта мысль осталась незаконченной.

Рассмотрим технологии, которые могут позволить хотя бы в некоторых случаях скрытно от человека определить его личность. Во-первых, сразу стоит отбросить все контактные методы. Размещать сканеры отпечатков пальцев в ручках дверей не лучшая затея. Их заметно, многие не касаются ручек, контактные сканеры пачкаются, и.т.д. Во-вторых, можно сразу отбрасывать методы, где максимальная дальность ограниченна 10-15 сантиметрами (например вены рук). В-третьих, можно отбросить всю динамическую биометрию, так как там слишком низкие показатели FAR и FRR.

Остаётся всего две технологии. Это технологии, где в качестве сканеров данных выступают камеры: распознавание по лицам (2D, 3D) и распознавание по радужной оболочке.
Первую из них, распознавание по 2D лицам, уже неоднократно пытались внедрить(из-за её простоты), но всё время безуспешно. Это обусловлено низкими статистическими параметрами системы. Если в базе разыскиваемых личностей находится всего 100 человек, то каждый 10 прохожий будет объявляться разыскиваем. Даже у милиционера в метро КПД значительно выше.
Две следующих технологии очень похожи. Для обеих возможно использование на отдалении от человека, но обе должны иметь достаточное количество оборудования. Как 3D сканер лица, так и сканер радужной оболочки можно ставить в местах, где есть узкие проходы. Это эскалаторы, двери, лестницы. Примером такой системы может служить система, созданная SRI International (сейчас у них мёртвый сайт, но есть практически аналог от AOptix). Я не на 100% уверен, что система от SRI International рабочая, слишком много ошибок в видео, но принципиальная возможность создания существует. Вторая система работает, хотя там и слишком мала скорость для скрытной системы. Сканеры 3D лица работают примерно по тому же принципу: детектирование в узком проходе. В случае 3D лица и распознавании по глазам надёжность работы достаточно высокая. Если база 100 преступников, то проверять придётся лишь каждого 10000 из мирных граждан, что уже достаточно эффективно.

Ключевой особенностью любой скрытой биометрии является то, что человек не должен о ней знать. Вставить в глаза линзы, или изменить форму лица несколькими накладками можно незаметно для окружающих, но заметно для биометрической системы. Почему-то у меня есть подозрение, что в скором будущем спрос на линзы, изменяющие радужку значительно возрастёт. Возрос же в Британии спрос на банданы. А события там только первые ласточки биометрии.

Модель биометрической системы доступа и её частей

Любая биометрическая система будет состоять из нескольких элементов. В некоторых из систем отдельные элементы сращены, в некоторых разнесены в различные элементы.


В случае, если биометрическая система используется только на одной проходной, то особо без разницы, разделена ли система на части или нет. На месте можно добавлять человека в базу и проверять его. Если же существует несколько проходных, то нерационально хранить на каждой проходной отдельную базу данных. Более того, такая система не динамична: добавление или удаление пользователей требует обхода всех сканеров.

Биометрический сканер


Биометрический сканер это часть любой биометрической системы, без которой она не может существовать. В некоторых системах биометрический сканер это просто видеокамера, а в некоторых (например сканеры сетчатки), это сложный оптический комплекс. Двумя основными характеристиками биометрического сканера являются его принцип деятельности (контактный, бесконтактный) и его скорость (количество человек в минуту, которое он может обслужить). Для тех биометрических характеристик, чьё использование уже вошло в норму, сканер можно купить отдельно от логической системы. В случае, если сканер физически разделён с алгоритмом сравнения и с базой, то сканер может выполнять первичную обработку полученной биометрической характеристики (например для глаза это выделение радужки). Это действие выполняется для того, чтобы не перегружать канал общения сканера и основной базы. Так же, в сканере, отделённом от базы, обычно встроена система шифрования данных, чтобы обезопасить передачу биометрических данных.

Алгоритм сравнения + база данных

Эти две части биометрической системы обычно живут по соседству и часто дополняют друг друга. Для некоторых биометрических признаков алгоритм сравнения может при выполнять оптимизированных поиск по базе (сравнение по пальцам, сравнение по лицу). А в некоторых (глаза), для полного сравнения ему в любом случае нужно обойти всю базу.

Алгоритм сравнения имеет много характеристик. Его две основных характеристики, FAR и FRR во многом определяют биометрическую систему. Так же стоит отметить:

1) Скорость работы. Для некоторых сравнений (глаза), скорость работы может достигать сотен тысяч сравнений в секунду на обычном компьютере. Этой скорости хватает для того, чтобы обеспечить любые нужды пользователей, не замечая временной задержки. А для некоторых систем (3D лицо) это уже достаточно значащая характеристика системы, требующая большой вычислительной мощности для сохранения скорости работы при увеличении базы.
2) Удобство работы. По сути, удобство любой системы во многом устанавливается отношением FAR, FRR. В системе мы можем немножко изменять их значение, так, чтобы сделать акцент в сторону скорости или сторону надёжности. Грубо говоря, получается примерно такой график:


В случае если мы хотим высокого уровня надёжности, мы выбираем положение в левой его части. А если пользователей мало, то неплохие показатели будут и в правой части графика, где будет высокие характеристики удобства, а значит и высокая скорость работы.

«Сделать что-нибудь»

После сравнения биометрическая система должна выдать результаты сравнения на управляющие органы. Дальше это может быть как команда «открыть дверь», так и информация «такой-то такой-то пришёл на работу». А вот что дальше делать с этой информацией должны решать установщики системы. Но и тут не всё так просто, надо учитывать возможности атаки:

Атака на биометрическую систему

Несмотря на то, что многие биометрические системы снабжены алгоритмами, способными определить атаку на них, этого не достаточно чтобы относиться к безопасности беспечно. Самой простой атакой на идентификационную систему является многократное сканирование. Предположим ситуацию: в фирме служит порядка сотни человек. Злоумышленник подходит к биометрической системе пропуска и многократно сканируется на ней. Даже для надёжных систем через пару тысяч сканирований возможно ложное определение и пропуск злоумышленника на объект. Чтобы избежать этого многие системы отслеживают неудачные сканирования и после 10-15 попыток блокируют вход. Но в случаях, когда система этого не может делать - эта задача ложится на пользователя. К сожалению, об этом часто забывают.
Второй способ атаки на биометрическую систему - подделка объекта сканирования. В случае, если система имеет алгоритмы защиты от подделки, важно правильно на них среагировать. Обычно эти алгоритмы тоже вероятностные и имеют свой FAR и FRR. Так что не нужно забывать вовремя отслеживать сигналы об атаке и высылать охранника.
Кроме атаки на саму систему возможно атаковать окружение системы. Когда-то мы натолкнулись на забавную ситуацию в этой стране. Многие интеграторы не особо запариваются над передачей данных. Для передачи они используют стандартный протокол

Михайлов Алексей Алексеевич
начальник сектора отдела ФКУ НИЦ «Охрана» МВД России, подполковник полиции,

Колосков Алексей Анатольевич
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России, подполковник,

Дронов Юрий Иванович
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России

ВСТУПЛЕНИЕ

В настоящее время наблюдается бурное развитие биометрических систем контроля и допуска (далее биометрии) как за рубежом, так и в России. Действительно, использование биометрии для целей охраны чрезвычайно привлекательно. Любой ключ, таблетку - TouchMemory, Proxy-карту или другой материальный идентификатор можно украсть, сделать дубликат и таким образом получить доступ к объекту охраны.

Цифровой ПИН-код (вводится человеком с помощью клавиатуры) можно зафиксировать с помощью банальной видеокамеры, и потом есть возможность шантажа человека или угрозы физического воздействия на него с целью получения значения кода. Редко кто из читателей, на собственном опыте или на опыте своих знакомых, не сталкивался с таким способом мошенничества. Появился даже термин, обозначающий данный способ изъятия честно заработанных денег у граждан, - скимминг (от англ. skim - снимать сливки).

Биометрический идентификатор невозможно украсть или получить путем шантажа, что делает в перспективе его очень привлекательным для целей охраны и доступа. Правда, можно попытаться создать имитатор биологического признака человека, но тут должна проявить себя в полной мере биометрическая система и отвергнуть подделку.

Вопрос «обхода» биометрических систем - это большая и отдельная тема, и в рамках этой статьи мы не будем ее затрагивать, да и создать имитатор биологического признака человека - непростая задача.

Особенно отрадно отметить активное развитие данного направления охранной техники в России. Например, «Русское общество содействия развитию биометрических технологий, систем и коммуникаций» существует с 2002 года.

Существует и технический комитет по стандартизации ТК 098 «Биометрия и биомониторинг», который работает достаточно плодотворно (выпущено более 30 ГОСТ, см.: http://www.rusbiometrics.com/), но нас, как пользователей, больше всего интересует ГОСТ Р ИСО/МЭК19795-1-2007 «Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура».

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Для того чтобы понимать, о чем пишут в нормативных документах, необходимо определиться в терминах и определениях. Чаще всего по своему физическому принципу пишут об одном и том же, но называют совершенно иначе. Итак, о наиболее значимых параметрах в биометрии:

VERIFICATION (верификация) - процесс, при котором происходит сравнение представленного пользователем образца с шаблоном, зарегистрированным в базе данных (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается с одним шаблоном (сравнение один к одному с биометрическим шаблоном), поэтому любая биометрическая система будет иметь лучшие показатели для верификации по сравнению с идентификацией.

IDENTIFICATION (идентификация) - процесс, при котором осуществляется поиск в регистрационной базе данных и предоставляется список кандидатов, содержащих от нуля до одного или более идентификаторов (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается со многими шаблонами (сравнение один ко многим), и ошибка системы многократно возрастает. Идентификация становится наиболее критичным параметром для систем биометрии, основанной на распознавании характерных черт лица человека. Для машины лица людей практически идентичны.

FAR (False Acceptance Rate) - вероятность несанкционированного допуска (ошибка первого рода), выраженное в процентах число допусков системой неавторизованных лиц (имеется в виду верификация). Вероятностные параметры выражаются или в абсолютных величинах (10-5), для параметра FAR это означает, что 1 человек из 100 тыс. будет несанкционированно допущен, в процентах данное значение будет (0,001%).

ВЛД - вероятность ложного допуска (FAR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FRR (False Rejection Rate) - вероятность ложного задержания (ошибка второго рода), выраженное в процентах число отказов в допуске системой авторизованных лиц (имеется в виду верификация).

ВЛНД - вероятность ложного недопуска (FRR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FMR (False Match Rate) - вероятность ложного совпадения параметров. Где-то мы это уже читали, см. FAR, но в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛС - вероятность ложного совпадения (FMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FNMR (False Non-Match Rate) - вероятность ложного несовпадения параметров, в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛНС - вероятность ложного несовпадения (FNMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

Параметры (как и остальные перечисленные выше) взаимосвязаны (рис. 1). Меняя порог FAR и FRR - «чувствительности» биометрической системы, мы одновременно изменяем их, выбирая требуемое соотношение. Действительно, можно так настроить биометрическую систему, что она с большой долей вероятности будет пропускать зарегистрированных пользователей, но и с достаточной долей вероятности будет пропускать и незарегистрированных пользователей. Поэтому данные параметры должны быть указаны одновременно для биометрической системы.

Рис. 1. Графики FAR и FRR

Если указывается только один параметр, то вас, как пользователя, это должно насторожить, поскольку таким образом очень легко завысить параметры в сравнении с конкурентом. Утрируя, можно сказать, что самый низкий коэффициент FAR будет иметь неработающая система, уж точно она никого несанкционированно не допустит.

Более или менее объективным параметром биометрической системы является коэффициент EER.

Коэффициент EER (равный уровень ошибок) - это коэффициент, при котором обе ошибки (ошибка приема и ошибка отклонения) эквивалентны. Чем ниже коэффициент EER, тем выше точность биометрической системы.

Для параметров FMR и FNMR строят аналогичный график (рис. 2). Обратите внимание, что этот график всегда должен иметь привязку к объему базы данных (обычно числа выбирают с шагом 100, 1000, 10000 шаблонов и т.д.).

Рис. 2. Графики FMR и FNMR

КОО - кривая компромиссного определения ошибки (англ. DET - detection error trade-off curve; DET curve). Модифицированная кривая рабочей характеристики, по осям которой отложены вероятности ошибки (ложноположительная - по оси X и ложноотрицательная - по оси У), (ГОСТ Р ИСО/МЭК19795-1-2007).

Кривую КОО (DET) используют для построения графика вероятностей ошибок сравнения (ВЛНС (FNMR) в зависимости от ВЛС (FMR)), вероятностей ошибок принятия решения (ВЛНД (FRR) в зависимости от ВЛД (FAR)) (рис. 3-4) и вероятностей идентификации на открытом множестве (ВЛОИ в зависимости от ВЛПИ), (ГОСТ Р ИСО/МЭК19795-1-2007).

Рис. 3. График DET

Рис. 4. Пример кривых КОО (ГОСТ Р ИСО/МЭК19795-1-2007)

Графики, отображающие качество работы биометрических систем, достаточно многочисленны, иногда создается впечатление, что их назначение - запутать доверчивого пользователя. Существуют еще РХ -кривая рабочей характеристики (англ. ROC - receiver operating characteristic curve) (рис. 5-6), и, конечно, вы понимаете, что это далеко не последние кривые и зависимости, которые существуют в биометрии, но для ясности вопроса не будем на них останавливаться.

Рис. 5. Пример набора кривых РХ (ГОСТ Р ИСО/МЭК19795-1-2007)

Рис. 6. Пример ROC-кривой

Кривые РХ (ROC) не зависят от порога, что позволяет проводить сравнение эксплуатационных характеристик различных биометрических систем, используемых в аналогичных условиях, или одной биометрической системы, используемой в различных условиях окружающей среды.

Кривые РХ (ROC) используют для изображения эксплуатационных характеристик алгоритма сравнения (1 - ВЛНС в зависимости от ВЛС), (1 - FNMR в зависимости от FMR), эксплуатационных характеристик биометрических систем верификации (1 - ВЛНД в зависимости от ВЛД), (1 - FRR в зависимости от FAR), а также эксплуатационных характеристик биометрических систем идентификации на открытом множестве (вероятность идентификации в зависимости от ВЛПИ).

Примечание: ВЛПИ - вероятность ложноположительной идентификации (англ. FPIR - false-positive identification-error rate), т.е. доля транзакций идентификации незарегистрированных в системе пользователей, в результате которых возвращается идентификатор (ГОСТ Р ИСО/МЭК19795-1-2007).

1) Параметры FAR (ВЛД), FRR (ВЛНД) и FMR (ВЛС) FNMR (ВЛРС) имеет смысл рассматривать только в совокупности.

2) Чем ниже коэффициент EER, тем выше точность биометрической системы.

3) Хорошим тоном для биометрической системы является наличие графиков DET (КОО) и ROC (РХ).

ГРАНИЦЫ ПАРАМЕТРОВ FAR И FRR БИОМЕТРИЧЕСКИХ СИСТЕМ

Теперь давайте прикинем, какие параметры FAR и FRR должны быть у биометрических систем. Обратимся за аналогией к требованиям для цифрового кодонаборни-ка. Согласно ГОСТ число значимых десятичных цифр должно быть не менее 6, т.е. диапазон 0-999999, или 107 вариантов кода. Тогда вероятность FAR - 10-7, а вероятность FRR определяется работоспособностью системы, т.е. стремится к нулю.

В банкоматах используется 4-разрядный десятичный код (что не соответствует ГОСТ), и тогда FAR будет составлять 10-5. Возьмем FAR= 10-5 за определяющий параметр. Какое значение можно взять за приемлемое для FRR? Это зависит от задач биометрической системы, но нижняя граница должна находиться в диапазоне 10-2, т.е. вас, как легального пользователя, система не допустит только один раз из ста попыток. Для систем с большой пропускной способностью, например, проходная завода, это значение должно быть 10-3, иначе не понятно назначение биометрии, если мы не избавились от «человеческого» фактора.

Многие биометрические системы заявляют похожие и даже на порядок лучшие характеристики, но поскольку наши величины являются вероятностными, то необходимо указывать доверительный интервал этой величины. С этого момента производители биометрии предпочитают не вдаваться в подробности и не указывать данный параметр.

Если методика расчета, схема эксперимента и доверительный интервал не указаны, то по умолчанию подразумевается действие правила «тридцати», которое выдвинул J. F. Poter в работе «On the 30 error criterion)) (1997).

Об этом же говорит и ГОСТ Р ИСО/ МЭК19795-1-2007. В правиле «тридцати» утверждается, что для того, чтобы с доверительной вероятностью 90% истинная вероятность ошибки находилась в диапазоне ±30% от установленной вероятности ошибки, должно быть зарегистрировано не менее 30 ошибок. Например, если получены 30 ошибок ложного несоответствия в 3000 независимых испытаниях, можно с доверительной вероятностью 90% утверждать, что истинная вероятность ошибки находится в диапазоне от 0,7% до 1,3%. Правило следует непосредственно из биноминального распределения при независимых испытаниях и может применяться с учетом ожидаемых эксплуатационных характеристик для выполнения оценки.

После этого следует логичный вывод: чтобы получить величину ложного доступа в 10-5, нужно провести 3х106 опытов, что практически невозможно осуществить физически при реальном тестировании биометрической системы. Вот тут нас начинают мучить смутные сомнения.

Остается надеяться, что такое тестирование было проведено в лаборатории путем сравнения шаблонов вводимых биометрических признаков с шаблонами базы данных системы. Лабораторные испытания позволяют достаточно корректно оценить надежность заложенных алгоритмов обработки данных, но не реальную работу системы. Лабораторные испытания исключают такие воздействия на биометрическую систему, как электромагнитные наводки (актуально для всех систем биометрии), за-пыление или загрязнение контактных или дистанционных устройств считывания биометрического параметра, реальное поведение человека при взаимодействии с устройствами биометрии, недостаток или избыток освещения, периодическое изменение освещенности и т.д., да мало ли, что еще может повлиять на такую сложную систему, как система биометрии. Если бы человек мог заранее предугадать все негативно-действующие факторы, то можно было бы и не проводить натурные испытания.

Из опыта работы с другими охранными системами можем утверждать, что даже эксплуатация охранной системы в течение 45 суток не выявляет большинство скрытых проблем, и только опытная эксплуатация в течение 1-1,5 лет позволяет их устранить. У разработчиков существует даже термин - «детские болезни». Любая система должна ими переболеть.

Таким образом, кроме лабораторных испытаний необходимо проводить и натурные испытания, естественно, что оценки доверительных интервалов при меньшем количестве опытов должны оцениваться по другим методикам.

Обратимся к учебнику Е.С. Вентцель «Теория вероятностей» (М.: «Наука», 1969. С. 334), который утверждает, если вероятность Р очень велика или очень мала (что несомненно соответствует реальным результатам измерения вероятностей для биометрических систем), доверительный интервал строят, исходя не из приближенного, а из точного закона распределения частоты. Нетрудно убедиться, что это есть биномиальное распределение. Действительно, число появлений события А в n-опытах распределено по биномиальному закону: вероятность того, что событие А появится ровно m раз, равна

а частота р* есть не что иное, как число появлений события, деленное на число опытов.

В данном труде приводится графическая зависимость доверительного интервала от количества проведенных опытов (рис. 7) для доверительной вероятности b = 0,9.

Рис. 7. Графическая зависимость доверительного интервала от количества проведенных опытов

Рассмотрим пример. Мы провели 100 натурных опытов, из которых получили вероятность события равную 0,7. Тогда по оси абсцисс откладываем значение частоты р* = 0,7, проводим через эту точку прямую, параллельную оси ординат, и отмечаем точки пересечения прямой с парой кривых, соответствующих данному числу опытов n = 100; проекции этих точек на ось ординат и дадут границы р1 = 0,63, р2 = 0,77 доверительного интервала.

Для тех случаев, когда точность построения графического метода недостаточна, можно воспользоваться достаточно детальными табличными зависимостями (рис. 8) доверительного интервала, приведенными в труде И.В. Дунина-Барковского и Н.В. Смирнова «Теория вероятностей и математическая статистика в технике» (М.: Государственное издательство технико-теоретической литературы, 1955). В данной таблице х-числитель, n-знаменатель частости. Вероятности умножены на 1000.

Рассмотрим пример. Мы провели 204 натурных опытов, из которых событие произошло 4 раза. Вероятность Р = 4/204 = 0,0196, границы доверительного интервала р1 = 0,049, р2= 0,005.

Теоретически подразумевается, что заявленные в документации параметры должны быть подтверждены сертификатами. Однако в России почти во всех областях жизни действует институт добровольной сертификации, поэтому сертифицируют на те требования, на которые хотят или могут получать сертификат.

Берем первый попавшийся сертификат на биометрическую систему, и видим 6 наименований ГОСТ, из которых ни один не содержит перечисленные выше параметры. Слава богу, что они хоть относятся к охранной технике и нормам безопасности. Это еще не самый худший вариант, приходилось встречать приемники и передатчики радиосистем передачи данных (РСПИ), сертифицированные как электрические машины.

Рис. 8. Фрагмент табличной зависимости доверительного интервала от количества проведенных опытов для доверительной вероятности b = 0,95

САМОЕ ГЛАВНОЕ ИЗ ПЕРЕЧИСЛЕННОГО

1) Параметры FAR (ВЛД) должны быть не ниже 10-5, а FRR (ВЛНД) должны находиться в диапазоне 10"2-10"3.

2) Не стоит безоговорочно доверять указанным в документации вероятностным параметрам, их можно воспринимать только как ориентир.

3) Кроме лабораторных испытаний необходимо проводить и натурные испытания биометрических систем.

4) Необходимо попытаться получить от разработчика, производителя, продавца как можно больше информации о реальных биометрических параметрах системы и методике их получения.

5) Не ленитесь расшифровывать, на какие ГОСТ(ы) и пункты ГОСТ(ов) сертифицирована биометрическая система.

В продолжение начатой темы о реальных системах биометрической идентификации предлагаем поговорить в статье «Основные биометрические системы».

ЛИТЕРАТУРА

  1. http://www.1zagran.ru
  2. http://fingerprint.com.ua/
  3. http://habrahabr.ru/post/174397/
  4. http://sonda.ru/
  5. http://eyelock.com/index.php/ products/hbox
  6. http://www.bmk.spb.ru/
  7. http://www.avtelcom.ru/
  8. http://www.nec.com/en/global/ solutions/security/products/ hybrid_finger.html
  9. http://www.ria-stk.ru/mi «Мир измерений» 3/2014
  10. http://www.biometria.sk/ru/ principles-of-biometrics.html
  11. http://www.biometrics.ru
  12. http://www.guardinfo.ru/«Система физической защиты (СФЗ) ядерных материалов и ядерно-опасных объектов»
  13. http://cbsrus.ru/
  14. http: www.speechpro.ru
  15. Poter J F. On the 30 error criterion. 1997.
  16. ГОСТ Р ИСО/МЭК19795-1-2007. Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура.
  17. Болл Р.М., Коннел Дж. Х., Ратха Н.К., Сеньор Э.У. Руководство по биометрии. М.: ЗАО «РИЦ Техносфера», 2006.
  18. Симончик К.К., Белевитин Д.О., Матвеев Ю.Н., Дырмовский Д.В. Доступ к интернет-банкингу на основе бимодальной биометрии // Мир измерений. 2014. № 3.
  19. 19. Дунин-Барковский И.В., Смирнов Н.В. Теория вероятностей и математическая статистика в технике. М.: Государственное издательство технико-теоретической литературы, 1955.

Введение

1.Классификация и основные характеристики биометрических средств идентификации личности

2. Особенности реализации статических методов биометрического контроля

2.1 Идентификация по рисунку папиллярных линий

2.2 Идентификация по радужной оболочке глаз

2.3 Идентификация по капиллярам сетчатки глаз

2.4 Идентификация по геометрии и тепловому изображению лица

2.5 Идентификация но геометрии кисти руки

3. Особенности реализации динамических методов биометрического контроля

3.1 Идентификация по почерку и динамике подписи

3.3 Идентификация по ритму работы на клавиатуре

4. Биометрические технологии будущего

Заключение

Литература

Введение

Тема курсовой работы «Биометрические средства иденфикации личности».

Для идентификации личности современные электронные систем контроля и управления доступом (СКУД) используют устройства нескольких типов. Наиболее распространенными являются:

Кодонаборные устройства ПИН-кода (кнопочные клавиатуры);

Считыватели бесконтактных смарт-карт (интерфейс Виганда);

Считыватели проксимити-карт;

Считыватели ключа «тач-мемори»;

Считыватели штрих-кодов;

Биометрические считыватели.

В настоящее время самое широкое распространение получили всевозможные считыватели карт (проксимити, Виганда, с магнитной полосой и т. п). Они имеют свои неоспоримые преимущества и удобства в использовании, однако при этом в автоматизированном пункте доступа контролируется «проход карточки, а не человека». В то же время карточка может быть потеряна или украдена злоумышленниками. Все это снижает возможность использования СКУД, основанных исключительно на считывателях карт, в приложениях с высокими требованиями к уровню безопасности. Несравненно более высокий уровень безопасности обеспечивают всевозможные биометрические устройства контроля доступа, использующие в качестве идентифицирующего признака биометрические параметры человека (отпечаток пальца, геометрия руки, рисунок сетчатки глаза и т. п.), которые однозначно предоставляют доступ только определенному человеку - носителю кода (биометрических параметров). Но на сегодняшний день подобные устройства все еще остаются достаточно дорогими и сложными, и поэтому находят свое применение только в особо важных пунктах доступа. Считыватели штрих-кодов в настоящее время практически не устанавливаются, поскольку подделать пропуск чрезвычайно просто на принтере или на копировальном аппарате.

Цель работы рассмотреть принципы работы и использования биометрических средств иденфикации личности.

1. Классификация и основные характеристики биометрических средств идентификации личности

Достоинства биометрических идентификаторов на основе уникальных биологических, физиологических особенностей человека, однозначно удостоверяющих личность, привели к интенсивному развитию соответствующих средств. В биометрических идентификаторах используются статические методы, основанные на физиологических характеристиках человека, т. е. на уникальных характеристиках, данных ему от рождения (рисунки папиллярных линий пальцев, радужной оболочки глаз, капилляров сетчатки глаз, тепловое изображение лица, геометрия руки, ДНК), и динамические методы(почерк и динамика подписи, голос и особенности речи, ритм работы на клавиатуре). Предполагается использовать такие уникальные статические методы, как идентификация по подноггевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела, и динамические методы -идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т. д. Классификация современных биометрических средств идентификации показана на рис. 1.

Биометрические идентификаторы хорошо работают только тогда, когда оператор может проверить две вещи: во-первых, что биометрические данные получены от конкретного лица именно во время проверки, а во-вторых, что эти данные совпадают с образцом, хранящимся в картотеке. Биометрические характеристики являются уникальными идентификаторами, но вопрос их надежного хранения и защиты от перехвата по-прежнему остается открытым

Биометрические идентификаторы обеспечивают очень высокие показатели: вероятность несанкционированного доступа - 0,1 - 0,0001 %, вероятность ложного задержания - доли процентов, время идентификации - единицы секунд, но имеют более высокую стоимость по сравнению со средствами атрибутной идентификации. Качественные результаты сравнения различных биометрических технологий по точности идентификации и затратам указаны на рис. 2. Известны разработки СКУД, основанные на считывании и сравнении конфигураций сетки вен на запястье, образцов запаха, преобразованных в цифровой вид, анализе носящего уникальный характер акустического отклика среднего уха человека при облучении его специфическими акустическими импульсами и т. д.


Рис. 1. Классификация современных биометрических средств идентификации


Тенденция значительного улучшения характеристик биометрических идентификаторов и снижения их стоимости приведет к широкому применению биометрических идентификаторов в различных системах контроля и управления доступом. В настоящее время структура этого рынка представля-

Любая биометрическая технология применяется поэтапно:

Сканирование объекта;

Извлечение индивидуальной информации;

Формирование шаблона;

Сравнение текущего шаблона с базой данных.

Методика биометрической аутентификации заключается в следующем. Пользователь, обращаясь с запросом к СКУД на доступ, прежде всего, идентифицирует себя с помощью идентификационной карточки, пластикового ключа или личного идентификационного номера. Система по предъявленному пользователем идентификатору находит в своей памяти личный файл (эталон) пользователя, в котором вместе с номером хранятся данные его биометрии, предварительно зафиксированные во время процедуры регистрации пользователя. После этого пользователь предъявляет системе для считывания обусловленный носитель биометрических параметров. Сопоставив полученные и зарегистрированные данные, система принимает решение о предоставлении или запрещении доступа.




Рис. 2. Сравнение методов биометрической идентификации

Таким образом, наряду с измерителями биометрических характеристик СКУД должны быть оборудованы соответствующими считывателями идентификационных карточек или пластиковых ключей (или цифровой клавиатурой).

Основные биометрические средства защиты информации, предоставляемые сегодня российским рынком обеспечения безопасности, приведены в табл. 1, технические характеристики некоторых биометрических систем представлены в табл. 2.

Таблица 1. Современные биометрические средства защиты информации

Наименование Производитель Биопризнак Примечание
SACcat SAC Technologies Рисунок кожи пальца Приставка к компьютеру
TouchLock, TouchSafe, Identix Рисунок кожи СКУД объекта
TouchNet пальца
Eye Dentification Eyedentify Рисунок сетчатки СКУД объекта
System 7,5 глаза (моноблок)
Ibex 10 Eyedentify Рисунок сетчатки глаза СКУД объекта (порт, камера)
eriprint 2000 Biometric Identification Рисунок кожи пальца СКУД универсал
ID3D-R Handkey Recognition Systems Рисунок ладони руки СКУД универсал
HandKey Escape Рисунок ладони руки СКУД универсал
ICAM 2001 Eyedentify Рисунок сетчатки глаза СКУД универсал
Secure Touch Biometric Access Corp. Рисунок кожи пальца Приставка к компьютеру
BioMouse American Biometric Corp Рисунок кожи пальца Приставка к компьютеру
Fingerprint Identification Unit Sony Рисунок кожи пальца Приставка к компьютеру
Secure Keyboard Scanner National Registry Inc. Рисунок кожи пальца Приставка к компьютеру
Рубеж НПФ «Кристалл» Динамика подписи, спектр голоса Приставка к компьютеру
Дакточип Delsy Элсис, НПП Электрон (Россия), Опак (Белоруссия), Р&Р (Германия) Рисунок кожи пальца Приставка к компьютеру
BioLink U-Match Mouse,Мышь SFM- 2000A BioLink Technologies Рисунок кожи пальца Стандартная мышь со встроенным сканером отпечатка пальца
Биометрическая система защиты компьютерной информации Дакто ОАО «Черниговский завод радиоприборов» Биологически активные точки и папиллярные линии кожи Отдельный блок
Биометрическая система контроля Iris Access 3000 LG Electronics, Inc Рисунок радужной оболочки глаза Интеграция со считывателем карт

Говоря о точности автоматической аутентификации, принято выделять два типа ошибок Ошибки 1-го рода («ложная тревога») связаны с запрещением доступа законному пользователю. Ошибки 1-го рода («пропуск цели»)- предоставление доступа незаконному пользователю. Причина возникновения ошибок состоит в том, что при измерениях биометрических характеристик существует определенный разброс значений. В биометрии совершенно невероятно, чтобы образцы и вновь полученные характеристики давали полное совпадение. Это справедливо для всех биометрических характеристик, включая отпечатки пальцев, сканирование сетчатки глаза или опознание подписи. Например, пальцы руки не всегда могут быть помещены в одно и то же положение, под тем же самым углом или с тем же самым давлением. И так каждый раз при проверке.

17.01.2002 Джим Карр

Новое поколение биометрических устройств аутентификации сметает прежние преграды.

Если экипаж космического корабля во главе с капитаном Джином Люком Пикардом из известного телесериала Star Trek мог взаимодействовать с вычислительной системой Enterprise с помощью голоса, то почему же мы не входим в сеть таким образом? На самом деле сегодня это и возможно, и невозможно.

Биометрические устройства аутентификации для проверки идентичности пользователя на основе таких уникальных биологических показателей, как голос, отпечатки пальцев или черты лица, стали основой сюжетов многих киносценариев. Для перехода в режим ручного управления капитан Пикард мог обратиться к системе так: «Компьютер, используй код аутентификации альфа-омега!» Однако действительность часто не совпадает с вымыслом, и вряд ли вам или вашим коллегам удастся войти в свою сеть, используя речевое обращение.

Нельзя сказать, что биометрические устройства прежде не были доступны. Например, компания EyeDentify в 1982 г. первой начала поставлять на рынок сканеры сетчатки глаза; компания Recognition Systems с 1986 г. реализует устройство считывания для идентификации сотрудников по форме ладони; в изобилии предлагается оборудование для считывания радужной оболочки и отпечатков пальцев, а также системы удостоверения личности по голосу и чертам лица. Впрочем, широкое распространение подобных устройств тормозилось целым рядом факторов. Самым главным препятствием была их высокая цена, а ведь учреждениям, где необходимы персональные устройства аутентификации, требуются крупные партии - им нужны сотни или тысячи таких устройств.

Кроме того, большинство средств аутентификации оказалoсь слишком громоздким для инсталляции на настольных системах, в ноутбуках и в таких портативных устройствах, как сотовые телефоны или персональные электронные секретари. Массовому их внедрению мешала слишком низкая скорость работы.

И наконец, мало кто из руководителей отделов ИТ осознает необходимость приобретения таких продуктов. Большинство вычислительных систем вполне обходится обычными паролями и стандартными системами доступа, контролируемыми с помощью магнитных карт-ключей, хотя сотрудники часто нарушают правила работы, делясь своими паролями и картами с коллегами.

Однако налицо все признаки того, что рынок вполне «созрел» для такого оборудования. Производители начинают преодолевать физические и финансовые препятствия на пути внедрения биометрических устройств, и весьма вероятно, что им найдется применение во многих сетевых решениях.

Так что же происходит на рынке биометрических продуктов? Ясно одно: он стремительно развивается, особенно в области распознавания отпечатков пальцев, где технология уходит от оптических решений к интегральным схемам (ИС). К тому же биометрические возможности реализуются в огромном числе прочих устройств, включая клавиатуру, смарт-карты и оборудование контроля доступа. Давайте познакомимся поближе с некоторыми из них.

НЕБОЛЬШОЙ, НО РАСТУЩИЙ СПРОС

Какие бы цифры ни приводились, очевидно, что немногим организациям действительно необходимы биометрические устройства аутентификации. Поэтому рынок таких продуктов еще невелик, хотя растет довольно быстрыми темпами.

По данным аналитической компании Frost&Sullivan, общий объем продаж биометрического оборудования в Америке в 2000 г. не превысил 86,8 млн долларов и вырос в 2001 г. только до 160,3 млн долларов - цифры небольшие, тем не менее среднегодовой темп роста в сложных процентах составляет 109%. По прогнозам исследовательского центра META Group, уровень продаж этих устройств во всем мире в 2001 г. составит, как ожидается, около 300 млн долларов, а в 2003 г. эта сумма достигнет 900 млн долларов.

По информации консалтинговой компании International Biometric Group из Нью-Йорка, наиболее распространенной технологией стало сканирование отпечатков пальцев. Отмечается, что из 127 млн долларов, вырученных от продажи биометрических устройств, 44% приходится на дактилоскопические сканеры. Системы распознавания черт лица занимают второе место по уровню спроса, который составляет 14%, далее следуют устройства распознавания по форме ладони (13%), по голосу (10%) и радужной оболочке глаза (8%). Устройства верификации подписи в этом списке составляют 2%.

Эрл Перкинс, заместитель директора META Group по вопросам биометрических устройств и смарт-карт, сравнивает неприятие пользователями биометрических приборов с ситуацией, складывающейся на рынке инфраструктуры открытых ключей (Public Key Infrastructure, PKI). Он полагает, что оба направления достойны признания со стороны корпоративных служб безопасности и сетевых администраторов. По словам Джесона Райта, возглавляющего направление безопасности в компании Frost&Sullivan, основной фактор, способный радикально повлиять на ситуацию на рынке биометрических устройств, - их стоимость. Только недавно цены на биометрические продукты упали до уровня, приемлемого для массового потребителя.

Например, дактилоскопические считыватели сейчас продаются по цене от 100 до 200 долларов в расчете на пользователя, став значительно дешевле по сравнению с 1998 г., когда их цена составляла около 400 долларов. К тому же многочисленные производители ПК и внешних устройств встраивают дактилоскопические сканеры в свои продукты; среди них крупнейший производитель ПК компания Compaq, поставщики «мышей» SecuGen и Siemens, а также выпускающая клавиатуры Fujitsu Takaisaws.

Резкое снижение цен на устройства аутентификации наблюдается и на рынке других биометрических технологий. В частности, стоимость оборудования идентификации личности по голосу и чертам лица, где могут применяться микрофоны и камеры, которые поставляются в стандартной комплектации со многими настольными системами ПК и ноутбуками, снизилась до уровня массового потребления.

Однако есть нечто более важное, чем цены, утверждает Перкинс. Тот факт, что организации еще не закупают биометрические устройства крупными партиями, свидетельствует об отсутствии надлежащего внимания к собственной инфраструктуре идентификации. Большинство организаций имеет множество различных каталогов, пять-шесть методов аутентификации, сетевой вход в Windows, а каждое приложение защищено собственным паролем.

По существу, основная масса биометрических систем аутентификации разрабатывается в виде самостоятельных либо «точечных» решений; т. е. одно подразделение использует дактилоскопический считыватель для санкционированного доступа к ПК, другое - технологию сканирования ладони для доступа в серверную комнату, но взаимосвязи между этими двумя решениями нет. Поэтому подобные устройства обычно внедряются сами по себе, без интеграции с внутренними системами и списками идентификаторов пользователей. Ситуация здесь меняется, но медленно.

До недавних пор производители не умели комбинировать в одном интегрированном продукте эти несопоставимые методы, чтобы разнообразное биометрическое оборудование можно было использовать с одной внутренней системой. Однако некоторые компании, например Ankari, BioNetrix, Identix, Keyware и SAFLinks, уже реализуют подобные продукты.

Они интегрируют биометрические возможности во внутренние системы: в частности, в такие системы однократной аутентификации (Single Sign-On, SSO) масштаба предприятия, как eTrust компании Computer Associates и Novell Modular Authentification Service (NMAS) компании Novell. Подобная консолидация позволяет сетевым администраторам заменить службы однократной аутентификации паролей биометрическими технологиями.

Учитывая снижение цен, уменьшение размеров устройств и более высокую степень интеграции, аналитики полагают, что сетевые администраторы наконец поймут преимущества биометрических устройств перед системами аутентификации по паролю. При использовании дактилоскопических сканеров и устройств распознавания голоса для входа в сети сотрудники избавляются от необходимости запоминать сложные пароли. При этом никто другой не сможет «позаимствовать» их отпечатки пальцев для несанкционированного доступа к критически важным сетевым ресурсам.

По словам Франка Принса, старшего аналитика группы по вопросам инфраструктуры электронной коммерции в компании Forrester Research, биометрический подход позволяет упростить процесс выяснения «кто вы такой». Обращая внимание на то, что основным фактором в продвижении биометрических технологий производители считают удобство применения этих устройств, он предостерегает от излишнего упрощения системы идентификации, которое не должно приводить к нарушению принципа «разумной достаточности».

ОПТИКА ПРОТИВ ИНТЕГРАЛЬНЫХ СХЕМ

Неудивительно, что самый значительный прогресс наблюдается среди сканеров отпечатков пальцев, поскольку они составляют значительную долю рынка биометрических устройств. При этом многие производители все чаще переходят от дактилоскопического оборудования на базе оптики к продуктам, основанным на интегральных схемах.

В традиционных устройствах сканирования отпечатков пальцев основным элементом является маленькая оптическая камера для записи характерного рисунка пальца. Ряд производителей, включая компанию DigitalPersona, все еще использует эту технологию.

Однако, по мнению Скотта Муди, главного администратора в AuthenTec (полупроводниковой компании, занимающейся разработкой микросхем для некоторых периферийных дактилоскопических сканеров), все больше производителей дактилоскопического оборудования проявляeт внимание к сенсорным устройствам на базе интегральных схем. Такая тенденция открывает новые сферы применения аутентификации на основе отпечатков пальцев.

Новое поколение продуктов измеряет емкостное сопротивление кожи для формирования изображения по различным характеристикам отпечатка пальца. Например, сенсорное дактилоскопическое устройство компании Veridicom собирает информацию, считывая емкостное сопротивление с помощью твердотельного полупроводникового датчика.

Принцип действия таков: палец, приложенный к этому прибору, выполняет роль одной из пластин конденсатора. Другая, расположенная на поверхности сенсора, представляет собой кремниевую микросхему с 90 тыс. чувствительных пластинок конденсатора, которые формируют восьмиразрядное представление о выпуклостях и впадинах рисунка сосудов пальца. Полученная информация преобразуется в видеосигнал и затем обрабатывается в соответствии с алгоритмом, формирующим образец изображения. Именно по этому образцу, а не по изображению самого отпечатка, осуществляется верификация пользователя при последующей регистрации.

Другой используемый компанией AuthenTec метод делает сенсорную проверку на основе интегральных схем еще более точной. Дактилоскопический считыватель FingerLoc на базе интегральных схем (и недавно выпущенный EntrePad) содержит прямоугольную поверхность для проверки отпечатков пальцев, называемую сенсорной матрицей. Это не что иное как активный массив антенн, состоящий более чем из 16 тыс. элементов с прозрачным покрытием, защищающим от царапин и прочих внешних воздействий. Сенсорная матрица окружена направляющим кольцом, которое передает слабые сигналы, улавливаемые отдельными элементами-антеннами.

Муди приводит пример совместной работы программного обеспечения TruePrint и аппаратных устройств компании AuthenTec по сканированию более глубокого слоя (под эпидермисом) - там, где находятся уникальные выпуклости и впадины, создающие рисунок пальца. Когда пользователь прикасается к поверхности микросхемы, направляющее кольцо ассоциирует слабый сигнал с подкожным слоем пальца.

Данный сигнал создает цифровой образец, который отражает уникальную подкожную структуру - в этом заключается отличительное преимущество технологии AuthenTec. Используя усилители более высокого разрешения (менее 1 пиксела) и прочие средства восстановления сигнала, TruePrint управляет выходными сигналами с тысяч отдельных сенсорных элементов и формирует на их основе точное неискаженное представление отпечатка пальца, после чего переводит его в образец, используемый впоследствии для верификации.

ЗА И ПРОТИВ ИНТЕГРАЛЬНОГО И ОПТИЧЕСКОГО ПОДХОДОВ

Хотя поставщики биометрических устройств на базе интегральных схем и оптики не ведут между собой непримиримую войну, тем не менее каждая из технологий имеет ярых приверженцев, которые приводят различные доводы за и против обоих методов. Споры ведутся в основном вокруг стоимости и производительности.

Муди обращает внимание на то, что продукты на базе интегральных схем могут иметь значительно меньшие размеры, чем оптические считыватели, и потому их проще реализовать в более широком спектре периферийных устройств. Новое сенсорное устройство AuthenPad компании AuthenTec представляет собой квадрат со стороной 20 мм и толщиной 1,4 мм (размеры сенсора FingerLoc, выпущенного год назад, соответственно 26 мм и 4 мм).

Что же касается оптических считывателей, то, по мнению Георга Майерса, заместителя директора по маркетингу компании DigitalPersona, они будут по-прежнему присутствовать на рынке, и на это есть несколько причин. Спрос на оборудование определяется не только производительностью, но и ценой. Майерс утверждает, что устройства на интегральных схемах плохо переносят прикосновения, поскольку жир, масло, соль на руках могут со временем испортить поверхность микросхемы. Хотя производители кремниевых покрытий способны преодолеть эти трудности, производство биометрических продуктов на интегральных схемах все еще требует определенных затрат, и сократить стоимость можно только за счет уменьшения размеров микросхемы.

Проблема, по его словам, состоит в том, что информация о рисунке пальца, которую снимают маленькие микросхемы, недостаточна для получения точного представления, поскольку они не считывают информацию со всего пальца. Между тем сенсоры U.are.U компании DigitalPersona позволяют сделать это. Кроме того, такие устройства опираются на алгоритм преобразования изображения отпечатка пальца в уникальную схему «характерных точек» (см. Рисунок 1). Данный алгоритм сканирования применяется в дактилоскопических устройствах, предназначенных для пентициарных учреждений. Характерными называются точки, несущие уникальную информацию об отпечатке пальца: например, о тех местах, где рисунок сосудов заканчивается завитком или выпуклостью. Майерс считает, что такой метод позволяет более точно считывать информацию об отпечатке, нежели копирование линий кровеносных сосудов с указанием особенностей кожного рельефа.

Небольшой размер дактилоскопических считывателей на интегральных схемах обеспечивает их интеграцию в периферийные устройства, наделяя последние комбинированными функциями.

Как уже отмечалось, Compaq поставляет на рынок ПК DeskPro со считывателем в качестве одной из опций. Такой считыватель, разработанный компанией Identix, имеет площадь около дюйма и подключается к ПК через параллельный порт.

Прочие производители комбинируют биометрические системы со смарт-картами и картами-ключами. Например, компания AiT/affinitex интегрировала считыватель VeriMe в идентификационную карточку. Это устройство толщиной 1,27 мм взаимодействует со считывателем идентификационной карточки посредством инфракрасного сигнала, как это уже реализовано в случае карт контроля доступа, которые во многих учреждениях применяются для открывания дверей. Но и при таком подходе пользователям требуется первоначально занести свой отпечаток пальца в систему для создания его образца.

По словам Берни Эша, старшего администратора компании AiT/affinitex, сотрудник должен приложить свой палец к карточке, находясь внутри полутораметровой зоны от считывателя. При совпадении отпечатка с образцом системе управления сообщается его личный ключ шифрования. Таким образом гарантируется безопасный доступ к разрешенным ресурсам.

В биометрической идентификационной смарт-карте Authentic компания Oberthur Card Systems реализовала сходный подход. Как и в VeriMe, образец отпечатка пальца запоминается в памяти карты в процессе внесения в списки идентификаторов пользователей, устанавливая соответствие между образцом и личным ключом шифрования. Затем, когда пользователь вводит смарт-карту в считыватель и прикладывает палец к сенсору, ключ удостоверяет его личность.

Эрл Перкинс считает комбинацию биометрических устройств и смарт-карт удачным решением. «У многих европейских производителей смарт-карт слюнки текут при мысли о североамериканском рынке», - заявляет он, замечая, что их разработкой занимаются также компании Gemplus и Schlumberger.

ПРОТЯНИ МНЕ РУКУ

Устройства сканирования ладони, или сканирования формы ладони, по уровню доходов занимают второе место среди биометрических устройств, однако редко применяются в сетевой среде из-за высокой стоимости и размера. В качестве примера можно привести компанию Recognition Systems, которая продает систему распознавания по форме ладони HandKey II за 1595 долларов, что превышает возможности многих организаций, желающих приобрести настольные устройства безопасности. Кроме того, как и многие другие подобные устройства, HandKey II крепятся к стене и слишком велики для установки на настольную систему или ноутбук.

Однако сканеры формы ладони идеальны для вычислительных сред со строгим режимом безопасности и напряженным трафиком, включая серверные комнаты, считает Мартин Худдарт, директор компании Recognition Systems. Он утверждает, что они чрезвычайно точны, обладают очень низким коэффициентом ошибочного отказа (False Rejection Rate, FRR), т. е. процентом отклоненных законных пользователей. Низкий коэффициент FRR имеет очень важное значение, прежде всего, потому, что позволяет смягчить чувство разочарования и дискомфорта, которое испытывают пользователи по отношению к биометрическому оборудованию.

Устройства считывания формы ладони создают объемное изображение ладони, измеряя длину пальцев, толщину и площадь поверхности ладони. Продукты компании Recognition Systems выполняют более 90 измерений, которые преобразуются в девятиразрядный образец для дальнейших сравнений. Этот образец может быть сохранен локально, на индивидуальном сканере ладони либо в централизованной базе данных.

Среди производителей устройств распознавания формы ладони можно отметить компании Stromberg и Dermalog.

СИСТЕМЫ РАСПОЗНАВАНИЯ ЧЕРТ ЛИЦА И ГОЛОСА

Технология сканирования черт лица подходит для тех приложений, где прочие биометрические технологии непригодны. В этом случае для верификации и идентификации личности используются особенности глаз, носа и губ.

Производители устройств распознавания черт лица - BioID America, Visionics и eTrue - разработали собственные математические алгоритмы для идентификации пользователей: например, Visionics создала устройство Local Feature Analysys для получения снимка лица.

Компания BioID America поставляет на рынок как оборудование для распознавания по чертам лица, так и устройства верификации по голосу. Джефф Бечлер, директор по продажам, среди преимуществ сканирования черт лица называет возможность использования таких приспособлений вместе с различными типами камер, поставляемыми в стандартной комплектации с ПК.

Но исследования, проводимые компанией International Biometric Group, говорят о том, что сотрудники многих организаций не доверяют устройствам распознавания по чертам лица отчасти из-за того, что камера их фотографирует, а затем выводит снимки на экран монитора; при этом многие опасаются, что используемая камера низкого качества. Кроме того, по данным этой компании, сканирование черт лица - единственный метод биометрической аутентификации, который не требует согласия на выполнение проверки (и может осуществляться скрытой камерой), а потому имеет негативный для пользователей подтекст.

Системы аутентификации по голосу экономически выгодны по тем же причинам, что и системы распознавания по чертам лица. В частности, их можно устанавливать с оборудованием (например, микрофонами), поставляемым в стандартной комплектации со многими ПК.

Все это говорит о том, что оборудование аутентификации по голосу более пригодно для интеграции в приложения телефонии, чем для входа в сеть. Обычно оно позволяет абонентам получить доступ в финансовые или прочие системы посредством телефонной связи. Наиболее известна на этом рынке продукция компаний Nuance Communications и SpeechWorks.

Один из этапов работы данных устройств - распознавание голоса, т. е. сначала распознается контекст произнесенных слов, а затем подтверждается тождество личности.

«Системы аутентификации по голосу при записи образца и в процессе последующей идентификации опираются на такие уникальные для каждого человека особенности голоса, как высота, модуляция и частота звука», - утверждает Джо Маннино, главный администратор компании VeriVoice. По мнению Лауры Марино, менеджера по продуктам компании Nuance Communications, производящей систему аутентификации по голосу Verifier, эти показатели определяются физическими характеристиками голосового тракта и уникальны для каждого человека.

Из-за того, что голос можно просто записать на пленку или другие носители, некоторые производители, включая VeriVoice, встраивают в свои продукты операцию запроса отклика. Эта функция предлагает пользователю при входе ответить на предварительно подготовленный и регулярно меняющийся запрос: например, такой: «Повторите числа 0, 1, 3».

МИНУС АУТЕНТИФИКАЦИЯПО СЕТЧАТКЕ ГЛАЗА

Лишь в области сканирования сетчатки глаза, одном из самых точных биометрических методов, отрасль движется вспять. Это связано с тем, что основной производитель таких систем, компания EyeDentify, отозвала свою модель 2001 сканера сетчатки из-за недостаточной ее проработки: продукт отличался слишком большим количеством движущихся частей и довольно высокой ценой порядка 2000 долларов.

По словам президента EyeDentify Крега Силви, сетчатка человеческого глаза представляет собой уникальный объект для аутентификации. «Даже у близнецов рисунок кровеносных сосудов глазного дна отличается», - подчеркивает он.

Технология сканирования, запатентованная компанией EyeDentify, заключается в том, что инфракрасное излучение кровеносных сосудов сетчатки отражается и собирается под различными углами. По аналогии с другими биометрическими устройствами, полученная информация скрупулезно анализируется с помощью соответствующих алгоритмов: в частности, оборудование от EyeDentify формирует 96-разрядный образец, который уникальным образом идентифицирует человека.

К сожалению, пользователи считают модель 2001, в состав которой входят движущиеся зеркала и ленты, слишком неудобной. Силви утверждает, что компания разрабатывает сканер сетчатки, который будет стоить 400-500 долларов и способен с высокой степенью точности выполнять сканирование на расстоянии 7,5 см, не оставляя ни малейших сомнений при идентификации личности. Он уверен, что более быстрые процессоры и прочие новые технологии позволят создать полностью электронный считыватель сетчатки глаза без движущихся частей.

Джим Карр - заместитель главного редактора Network Magazine. С ним можно связаться по адресу: [email protected] .

Рассматриваемые производители биометрических устройств

Рабочая группа BioAPI Consortium занимается разработкой стандартного прикладного программного интерфейса (Application Program Interface, API) для биометрических устройств. Информацию об этих разработках можно найти по адресу: http://www.bioapi.com .

На сайте компании Internetional Biometric Group по адресу: http://www.biometricgroup.com , можно получить информацию о производителях и продуктах, а также актуальные данные о рынке биометрических технологий.

Ссылки на формулировки биометрических технологий, отчеты о научной работе, проекты и публикации компании Biometric Research на базе Мичиганского университета приводятся по адресу: http://www.boimetrics.cse.msu.edu.com .