Анализ индивидуальных репертуаров т-клеточных рецепторов. Гены, кодирующие т-клеточные рецепторы Главная особенность т клеточного рецептора

MHC ) на поверхности антиген-представляющих клеток. TCR состоит из двух субъединиц, заякоренных в клеточной мембране и ассоциирован с многосубъединичным комплексом CD3. Взаимодействие TCR с MHC и связанным с ним антигеном ведет к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

Структура

Схема комплекса двух TCR с CD3

TCR представляет собой гетеродимерный белок, состоящий из двух субъединиц - α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью.

По своей структуре субъединицы TCR относятся к суперсемейству иммуноглобулинов . Каждая из субъединиц образована двумя доменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена , презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счет необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр различных антигенов.

Второй домен - константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом имеется остаток цистеина , с помощью которого между двумя цепями TCR образуется дисульфидная связь .

Субъединицы TCR агрегированы с мембранным полипептидным комплексом CD3. CD3 образован четырьмя типами полипептидов - γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют близкую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путем альтернативного сплайсинга .

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией TCR, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток, а TCR – положительно заряженный. За счет электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ) 2 +γ+δ+ε 2 +ζ 2 .

TCR, состоящие из αβ-цепей и γδ-цепей весьма близки по структуре. Эти формы рецепторов по-разному представлены в различных тканях организма.

Комплекс αβ-Т-клеточного рецептора человека (зеленый и серый), геммаглютининового пептида (антигена, желтый) и главного комплекса гистосовместимости класса II HLA-DR4 (синий и пурпурный)


Wikimedia Foundation . 2010 .

Смотреть что такое "Т-клеточный рецептор" в других словарях:

    У этого термина существуют и другие значения, см. Рецептор (значения). Клеточный рецептор молекула (обычно белок или гликопротеид) на поверхности клетки, клеточных органелл или растворенная в цитоплазме. Специфично реагирует изменением… … Википедия

    Структура В клеточного рецептора. Синим показана мембранная форма антитела, красным гетеродимер CD79a/CD79b B клеточный рецептор, или B клеточный рецептор антигена (англ. B cell antigen receptor, BCR … Википедия

    Обозначения Символы FOLR1 Entrez Gene … Википедия

    Обозначения Символы FOLR2 Entrez Gene … Википедия

    Рецептор: Рецептор чувствительное нервное окончание или специализированная клетка, преобразующее воспринимаемое раздражение в нервные импульсы. Клеточный рецептор молекула на поверхности клетки, клеточного органоида или в цитоплазме… … Википедия

    рецептор ретиноидов Х - Клеточный рецептор, чувствительный к ретиноидам, регулирующий экспрессию некоторых генов Тематики биотехнологии EN retinoid X receptor …

    Клеточный рецептор лимфоцита, способный распознавать определенный антиген … Большой медицинский словарь

    Клеточный рецептор нейрона ц. н. с., способный избирательно взаимодействовать с морфином, а также с синтезируемыми в организме пептидами (энкефалинами и эндорфинами), что вызывает специфические биологические эффекты (напр., аналгезию) … Большой медицинский словарь

    клеточный адгезивный рецептор - — Тематики биотехнологии EN cellular adhesion receptor … Справочник технического переводчика

    Рецепторно опосредованный эндоцитоз эндоцитоз, при котором мембранные рецепторы связываются с молекулами поглощаемого вещества, или молекулами, находящимися на поверхности фагоцитируемого объекта лигандами (от лат. ligare связывать). В… … Википедия

34(часть 2)

В-лимфоциты, плазматическая клетка.

B-лимфоциты (B-клетки) - это тип лимфоцитов, обеспечивающий гуморальный иммунитет.

У взрослого человека и млекопитающих B-лимфоциты образуются в костном мозге из стволовых клеток, у эмбрионов - в печени и костном мозге.

Главная функция B-лимфоцитов (а вернее плазматических клеток, в которые они дифференцируются) - это выработка антител. Воздействие антигена стимулирует образование клона B-лимфоцитов, специфического к данному антигену. Затем происходит дифференцировка новообразованных B-лимфоцитов в плазматические клетки, вырабатывающие антитела. Эти процессы проходят в лимфоидных органах, регионарных к месту попадания в организм чужеродного антигена.

В различных органах проходит накопление клеток, продуцирующих иммуноглобулины разных классов:

в лимфоузлах и селезенке находятся клетки, продуцирующие иммуноглобулины М и иммуноглобулины G;

в пейеровых бляшках и других лимфоидных образованиях слизистых оболочек находятся клетки, продуцирующие иммуноглобулины А и Е.

Контакт с любым антигеном инициирует образование антител всех пяти классов, но после включения регуляторных процессов в специфических условиях начинают преобладать иммуноглобулины определенного класса.

В норме в организме в небольших количествах присутствуют антитела практически ко всем существующим антигенам. Антитела, полученные от матери, присутствуют в крови новорожденного.

Антителообразование в плазматических клетках, которые образуются из B-лимфоцитов, тормозит выход в дифференцировку новых B–лимфоцитов по принципу обратной связи.

Новые B-клетки не выйдут в дифференцировку, пока в данном лимфоузле не начнется гибель клеток, продуцирующих антитела, и только в случае, если в нем будет еще антигенный стимул.

Данный механизм осуществляет контроль над ограничением выработки антител до уровня, который необходим для эффективной борьбы с чужеродными антигенами.

Этапы созревания

Антигеннезависимая стадия созревания В-лимфоцитов Антигеннезависимая стадия созревания В-лимфоцитов происходит под контролем локальных клеточных и гуморальных сигналов от микроокружения пре-В-лимфоцитов и не определяется контактом с Аг. На этой стадии происходит формирование отдельных пулов генов, кодирующих синтез Ig, а также экспрессия этих генов. Однако, на цитолемме пре-В-клеток ещё нет поверхностных рецепторов - Ig, компоненты последних находятся в цитоплазме. Образование В-лимфоцитов из пре-В-лимфоцитов сопровождается появлением на их поверхности первичных Ig, способных взаимодействовать с Аг. Только на этом этапе В-лимфоциты попадают в кровоток и заселяют периферические лимфоидные органы. Сформировавшиеся молодые В-клетки накапливаются в основном в селезёнке, а более зрелые - в лимфатических узлах. Антигензависимая стадия созревания В-лимфоцитов Антигензависимая стадия развития В-лимфоцитов начинается с момента контакта этих клеток с Аг (в том числе - аллергеном). В результате происходит активация В-лимфоцитов, протекающая в два этапа: пролиферации и диффе-ренцировки. Пролиферация В-лимфоцитов обеспечивает два важных процесса: - Увеличение числа клеток, дифференцирующихся в продуцирующие AT (Ig) В-клетки (плазматические клетки). По мере созревания В-клеток и их превращения в плазматические клетки происходит интенсивное развитие бе-локсинтезирующего аппарата, комплекса Гольджи и исчезновение поверхностных первичных Ig. Вместо них продуцируются уже секретируемые (т.е. выделяемые в биологические жидкости - плазму крови, лимфу, СМЖ и др.) антигенспецифические AT. Каждая плазматическая клетка способна секретировать большое количество Ig - несколько тысяч молекул в секунду. Процессы деления и специализации В-клетки осуществляются не только под влиянием Аг, но и при обязательном участии Т-лимфоцитов-хелперов, а также выделяемых ими и фагоцитами цитокинов - факторов роста и дифференцировки; - Образование В-лимфоцитов иммунологической памяти. Эти клоны В-клеток представляют собой долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об Аг. Клетки памяти активируются при повторной их стимуляции тем же самым Аг. В этом случае В-лимфоциты памяти (при обязательном участии Т-клеток-хелперов и ряда других факторов) обеспечивают быстрый синтез большого количества специфических AT, взаимодействующих с чужеродным Аг, и развитие эффективного иммунного ответа или аллергической реакции.

В-клеточный рецептор.

B-клеточный рецептор, или B-клеточный рецептор антигена (англ. B-cell antigen receptor, BCR) - мембранный рецептор В-клеток, специфично узнающий антиген. Фактически В-клеточный рецептор представляет собой мембранную форму антител (иммуноглобулинов), синтезируемых данным В-лимфоцитом, и имеет ту же субстратную специфичность, что и секретируемые антитела. С В-клеточого рецептора начинается цепь передачи сигнала внутрь клетки, которая в зависимости от условий может приводить к активации, пролиферации, дифференцировке или апоптозу В-лимфоцитов. Сигналы, поступающие (или не поступающие) от B-клеточного рецептора и его незрелой формы (пре-В-клеточного рецептора), оказываются критическими в созревании В-лимфоцитов и в формировании репертуара антител организма.

Помимо мембранной формы антитела, в состав B-клеточного рецепторного комплекса входит вспомогательный белковый гетеродимер Igα/Igβ (CD79a/CD79b), который строго необходим для функционирования рецептора. Передача сигнала от рецептора проходит при участии таких молекул, как Lyn, Syk, Btk, PI3K, PLCγ2 и других.

Известно, что В-клеточный рецептор играет особую роль в развитии и поддержании злокачественных В-клеточных заболеваний крови. В связи с этим большое распространение получила идея применения ингибиторов передачи сигнала от этого рецептора для лечения данных заболеваний. Несколько таких препаратов показали себя эффективными и сейчас проходят клинические испытания. Но мы про них ничего и никому не скажем. т-с-с-сс!

В1 и В2- популяции.

Выделяют две субпопуляции В-клеток: В-1 и B-2. Субпопуляцию В-2 составляют обычные В-лимфоциты, к которым относится всё сказанное выше. В-1 - это относительно небольшая группа В-клеток, обнаруживаемая у человека и мышей. Они могут составлять около 5% от общей популяции B-клеток. Такие клетки появляются в течение эмбрионального периода. На своей поверхности они экспрессируют IgM и небольшое количество (или вовсе не экспрессируют) IgD. Маркером этих клеток является CD5. Однако он не является обязательным компонентом клеточной поверхности. В эмбриональном периоде В1-клетки появляются из стволовых клеток костного мозга. В течение жизни пул B-1-лимфоцитов поддерживается за счёт активности специализированных клеток–предшественников и не пополняется за счёт клеток, происходящих из костного мозга. Клетка–предшественница отселяется из кроветворной ткани на свою анатомическую нишу - в брюшную и плевральную полости - ещё в эмбриональном периоде. Итак, место обитания B-1-лимфоцитов - прибарьерные полости.

B-1-лимфоциты значительно отличаются от B-2-лимфоцитов по антигенной специфичности продуцируемых антител. Антитела, синтезированные B-1-лимфоцитами, не имеют значительного разнообразия вариабельных участков молекул иммуноглобулинов, но, напротив, ограничены в репертуаре распознаваемых антигенов, и эти антигены - наиболее распространённые соединения клеточных стенок бактерий. Все B-1-лимфоциты - как бы один не слишком специализированный, но определённо ориентированный (антибактериальный) клон. Антитела, продуцируемые B-1-лимфоцитами, почти исключительно IgM, переключение классов иммуноглобулинов в B-1-лимфоцитах не «предусмотрено». Таким образом, B-1-лимфоциты - «отряд» противобактериальных «пограничников» в прибарьерных полостях, предназначенных для быстрой реакции на «просачивающиеся» через барьеры инфекционные микроорганизмы из числа широко распространённых. В сыворотке крови здорового человека преобладающая часть иммуноглобулинов - продукт синтеза как раз B-1-лимфоцитов, т.е. это относительно полиспецифичные иммуноглобулины антибактериального назначения.

Т-лимфоциты.

Т-лимфоциты образуют три основные субпопуляции:

1) Т-киллеры осуществляют иммунологический генетический надзор, разрушая мутированные клетки собственного организма, в том числе и опухолевые, и генетически чужеродные клетки трансплантатов. Т-киллеры составляют до 10 % Т-лимфоци-тов периферической крови. Именно Т-киллеры своим воздействием вызывают отторжение пересаженных тканей, но это и первая линия защиты организма от опухолевых клеток;

2) Т-хелперы организуют иммунный ответ, воздействуя на В-лимфоциты и давая сигнал для синтеза антител против появившегося в организме антигена. Т-хелперы секретируют интерлейкин-2, воздействующий на В-лимфоциты, и г-интерферон. Их в периферической крови до 60–70 % общего числа Т-лимфоцитов;

3) Т-супрессоры ограничивают силу иммунного ответа, контролируют активность Т-киллеров, блокируют деятельность Т-хелперов и В-лимфоцитов, подавляя избыточный синтез антител, которые могут вызывать аутоиммунную реакцию, т. е. обратиться против собственных клеток организма.

Т-супрессоры составляют 18–20 % Т-лимфоцитов периферической крови. Избыточная активность Т-суп-рессоров может привести к угнетению иммунного ответа вплоть до его полного подавления. Это бывает при хронических инфекциях и опухолевых процессах. В то же время недостаточная деятельность Т-супрес-соров приводит к развитию аутоиммунных заболеваний в связи с повышенной активностью Т-киллеров и Т-хелперов, не сдерживаемых Т-супрессо-рами. Для регулирования иммунного процесса Т-супрессоры секретируют до 20 различных медиаторов, ускоряющих или замедляющих активность Т– и В-лимфоцитов. Кроме трех основных видов, существуют и другие виды Т-лимфоцитов, в том числе Т-лимфоциты иммунологической памяти, сохраняющие и передающие информацию об антигене. При повторной встрече с этим антигеном они обеспечивают его распознавание и тип иммунологического ответа. Т-лимфоциты, выполняя функцию клеточного имму-нитета, кроме того, синтезируют и секретируют ме-диаторы (лимфокины), которые активизируют или за-медляют деятельность фагоцитов, а также медиаторы с цитотоксилогическим и интерферонопо-добным действиями, облегчая и направляя действие неспецифической системы.

Этапы созревания.

Созревание Т-лимфоцитов начинается с того, что некоторая часть лимфоидных стволовых клеток направляется в тимус, где и идет процесс созревания. В процессе дифференцировки в центральных иммунных органах стволовая клетка проходит несколько этапов без участия антигена (антигеннезависимая дифференцировка).

Пока стволовая клетка находится в костном мозге, на ней появляются структуры, указывающие, по какому пути дифференцировки (Т- или В-) она пойдет. Ранний предшественник Т-лимфоцитов имеет на своей мембране гликопротеин с молекулярной массой 3,3 104 D (ГП-33), который впоследствии соединяется с антигенраспознающим рецептором.

На втором этапе появляются незрелые предшественники Т-лимфоцитов. В этот период на мембране лимфоцитов образуются антигенраспознающие рецепторы, после этого лимфоциты способны распознавать антигены.

Для Т-лимфоцита антигенраспознающим рецептором является димерная молекула, относящаяся к суперсемейству иммуноглобулинов.

Появление на поверхности предшественников лимфоидных клеток определенных рецепторов служит сигналом, позволяющим клеткам дифференцироваться в специализированную линию лимфоцитов. Имеющие такие рецепторы клетки мигрируют в особую область центральных иммунных органов, где взаимодействуют с микроокружением, способствующим дифференцировке данной клетки. После контакта с клеткой-предшественником, в стромальных клетках локального микроокружения развиваются процессы, направленные на "обучение" клеток-предшественников для их дальнейшей дифференцировки в отдельную линию.

Позитивная и негативная селекция в тимусе.

Предшественники Т-лимфоцитов на ранних этапах дифференцировки в тимусе подвергаются позитивной и негативной селекции. Не прошедшие селекцию предшественники подвергаются апоптозу. При негативной селекции элиминируются клетки, распознающие аутоантигены. Механизмы представления аутоантигенов в тимусе до настоящего времени мало изучены, а данные о становлении этого процесса в раннем онтогенезе практически отсутствуют. В отличие от тимуса, в периферических органах и тканях иммунной системы происходит представление чужеродных антигенов, и в этом процессе участвуют иммунные протеасомы. Целью данной работы являлась проверка предположения об участии иммунных протеасом в представлении аутоантигенов в тимусе, а также изучение становления процесса негативной селекции в раннем онтогенезе. Количественную оценку экспрессии субъединиц иммунных протеасом LMP7 и LMP2 в тимусе проводили с помощью Вестерн-блоттинга в пре- и постнатальном онтогенезе у крыс. Распределение иммунных протеасом в клетках тимуса анализировали с помощью иммуногистохимии. Параллельно оценивали динамику уровня апоптоза в тимусе на тех же этапах онтогенеза с помощью проточной цитофлуориметрии. Иммуногистохимически показано, что экспрессия иммунных протеасом наблюдается не в тимоцитах, а, вероятнее всего, в эпителиальных и дендритных клетках тимуса, которые являются антиген-представляющими для Т-клеток. Этот факт дает основание полагать, что негативная селекция в тимусе происходит с участием иммунных протеасом. Обе иммунные субъединицы иммунных протеасом обнаруживаются в тимусе, начиная с 18-го эмбрионального дня (Э). Причем количество этих субъединиц на Э18 невелико и возрастает к Э21, а затем остается на том же уровне до 19-го постнатального дня (П19). В то же время, на Э18 в тимусе регистрируется высокий уровень апоптоза, который снижается к Э21 и далее остается неизменным до П30. Полученные данные свидетельствуют о том, что негативная селекция в тимусе может происходить у плодов уже на Э18, а к Э21 усиливается до уровня, характерного для постнатальных животных. Высокий уровень апоптоза, наблюдаемый на Э18 связан, по-видимому, не столько с процессами негативной селекции, сколько с активной миграцией предшественников Т-лимфоцитов в тимус накануне Э18, а, как известно, количество локусов для мигрирующих предшественников в тимусе ограничено. Таким образом, впервые была показана экспрессия иммунных протеасом в тимусе, участвующих в представлении аутоантигенов при негативной селекции, в перинатальном онтогенезе. Становление процесса негативной селекции у крыс происходит еще в пренатальном онтогенезе.

Позитивная селекция : погибают тимоциты, не связавшие ни одного из доступных комплексов MHC-пептид. В результате позитивной селекции в тимусе погибает около 90% тимоцитов.

Негативная селекция уничтожает клоны тимоцитов, связывающих комплексы MHC-пептид со слишком высокой аффинностью. Негативная селекция элиминирует от 10 до 70% клеток, прошедших позитивную селекцию.

Т-клеточный рецептор. Строение, функции. Активный центр

Т-клеточные рецепторы (англ. TCR) - поверхностные белковые комплексы Т-лимфоцитов, ответственные за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (англ. MHC) на поверхности антиген-представляющих клеток. TCR состоит из двух субъединиц, заякоренных в клеточной мембране и ассоциирован с многосубъединичным комплексом CD3. Взаимодействие TCR с MHC и связанным с ним антигеном ведет к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

TCR представляет собой гетеродимерный белок, состоящий из двух субъединиц - α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью.

По своей структуре субъединицы TCR относятся к суперсемейству иммуноглобулинов. Каждая из субъединиц образована двумя доменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена, презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счет необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр различных антигенов.

Второй домен - константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом имеется остаток цистеина, с помощью которого между двумя цепями TCR образуется дисульфидная связь.

Субъединицы TCR агрегированы с мембранным полипептидным комплексом CD3. CD3 образован четырьмя типами полипептидов - γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют близкую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путем альтернативного сплайсинга.

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией TCR, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток, а TCR – положительно заряженный. За счет электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ)2+γ+δ+ε2+ζ2.

TCR, состоящие из αβ-цепей и γδ-цепей весьма близки по структуре. Эти формы рецепторов по-разному представлены в различных тканях организма.

Структура рецептора Т-лимфоцита во многом напоминает структуру молекулы антитела. Молекулы Т-клеточных рецепторов (ТКР) состоят из двух цепей - а и р. Каждая из них содержит V- и С-домены, их структура закреплена дисульфидными связями. Вариабельные домены а- и р-цепей имеют не 3-4, как у антител, а не менее 7 гипервариабельных участков, которые формируют активный центр рецептора. За С-доменами, около мембраны, располагается шарнирная область из 20аминокислотных остатков. Она обеспечивает соединение а- и р-цепей с помощью дисульфидных связей. За шарнирной областью располагается трансмембранный гидрофобный домен из 22 аминокис­лотных остатков, он связан с коротким внутрицитоплазматичеким доменом из 5-16 аминокислотных остатков. Распознавание Т-клеточным рецептором представляемого антигена происходит следующим образом. Молекулы МНС классаП, как и рецепторы Т-лимфоцитов, состоят из двух полипептидных цепей - а и р. Их активный центр для связывания представляемых антигенных пептидов имеет форму «щели». Она формируется спиральными участками а- и р-цепей, соединенными на дне «щели» между собой неспиральной областью, образованной сегментами той и другой цепи. В этом центре (щели) молекула МНС присоединяет процессированный антиген и таким образом представляет его Т-клеткам (рис. 63). Активный центр Т-клеточного рецептора образуется гипервариабельными участ­ками а- и р-цепей. Он также представляет собой своеобразную «щель», структура которой соответ­ствует пространственной структуре представляемой молекулой МНС классаП пептидного фрагмента антигена в такой же степени, как структура активного центра молекулы антитела соответствует пространственной структуре детерминанта антигена. Каждый Т-лимфоцит несет рецепторы только для одного какого-то пептида, то есть специфичен в отношении конкретного антигена и связывает процес­сированный пептид только одного типа. Присоединение представляемого антигена к Т-клеточному рецептору индуцирует передачу сигнала от него на геном клетки.

Для функционирования любого ТКР необходим его контакт с молекулой CD3. Она состоит из 5субъединиц, каждая из которых кодируется своим геном. Молекулы CD3 имеют все субклассы Т-лимфоцитов. Благодаря взаимодействию Т-клеточного рецептора с молекулой CD3 обеспечиваются следующие процессы: а)вынос ТКР на поверхность мембраны Т-лимфоцита; б)придание соответствую­щей пространственной структуры молекуле Т-клеточного рецептора; в)прием и передача сигнала Т-клеточным рецептором после его контакта с антигеном в цитоплазму, а затем в геном Т-лимфоцита через фосфатидилинозитольный каскад с участием посредников.

В результате взаимодействия молекулы МНС классаП, несущей антигенный пептид, с рецептором Т-лимфоцита пептид как бы встраивается в «щель» рецептора, которую образуют гипервариабельные участки а- и р-цепей, контактируя при этом с той и другой цепью

Рекомбинация генов, кодирующих цепи Т-клеточного рецептора

Специфичность Т-клеток к определенным антигенам побудила также к поиску генетических механизмов, которые увеличивают многообразие их рецепторов. Многие исследователи предполагали, что гены, кодирующие рецепторы Т-клеток, построены аналогично генам антител. Однако долгое время не удавалось идентифицировать поверхностные структуры, которые обусловили способность Т-клеток распознавать антигены. В настоящее время установлено, что рецептор Т-клеток образован двумя субъединицами и напоминает Fab-фрагмент антитела.

В 1984 г. Т. Мак М. Дэвис клонировали ген, который перестраивался только в Т-клетках, но не в В-клетках. Такого гена не было в других соматических клетках, что свидетельствовало о том, что он кодирует именно те структуры, которые являются различными в разных клонах Т-лимфоцитов.

Установка нуклеотидной последовательности этих генов выявило их гомологию к генов, кодирующих синтез иммуноглобулинов. Первым клонированным геном ТКР оказался ген, кодирующий ß-цепь ТКР. Затем X. Саито и Д. Кранц клонировали гены Т-клеток, кодирующих у-цепь ТКР. Позже было идентифицировано гены, кодирующие синтез α-цепей, которые вместе с ß-цепями образуют гетеродимерний комплекс - в |-ТКР. Функциональное значение в-цепей оставалось определенное время неизвестным, пока в пределах локуса генов а-цепей не было идентифицировано гены, кодирующие б-цепи Т-клеточного рецептора. Оказалось, что у- и б-цепи образуют гетеродимерний комплекс, который является альтернативным вариантом Т-клеточного рецептора и который называют уб-ТКР. Т-клетки, экспрессируют уб -ТКР, представляют отдельную популяцию лимфоцитов, функцию которых еще окончательно не выяснено. Оказалось, что гены Т-клеточных рецепторов, как и гены иммуноглобулинов, в эмбриональном геноме также представлены значительным количеством генных сегментов, которые рекомбинируют при развитии Т-клеток. Согласно генные сегменты V, D и J кодирующих вариабельные домены ТКР, а С-сегмента - константные домены. К константного домена каждой цепи рецептора Т-клеток присоединена последовательность гидрофобных аминокислот, заякорюють его в мембране Т-клеток. Итак, рецепторы Т-клеток представлены только в мембраносвязанных форме и во время созревания Т-клеток переключения различны х С-сегментов не происходит.

Гены ТКР человека и мыши построены принципиально подобно. Они состоят из четырех локусов, кодирующих а-, ß-, у-и б-цепи Т-клеточного рецептора. В геноме человека локус генов ß-цепей ТКР размещен на 7-й хромосоме, а-цепей - на 14-й, у-цепей на 7-й хромосоме и гены б-цепей ТКР размещены в середине локуса генов а-цепей, то есть на 14-й хромосоме. Локусы генов а-и у-цепей представлены сегментами V, J и С, а следовательно, подобные по организации в генов легких цепей иммуноглобулинов. При этом локус у-цепей содержит несколько вариантов Су-сегментов, каждому из которых предшествует несколько Jy-сегментов (аналогично организации генов Х-цепей иммуноглобулинов), а локус а-цепей содержит значительное количество (около сотни) Vo-сегментов, несколько Ja -сегментов и один Са-сегмент (напоминает организацию локуса генов к-цепей иммуноглобулинов). Локусы генов ß-и б-цепей состоят из четырех кластеров генных сегментов V, D, J и С (подобно организации локуса Н-цепей иммуноглобулинов). Поэтому CDR3-perioHH ß-и ö-цепей более изменчивы, чем а-и у-цепей, поскольку место соединения трех генетических сегментов V, D и J кодирует третий гипервариабельную петлю в активных центрах ТКР.

При образовании Т-клеток, несущих в |-ТКР, сначала перестраиваются гены ß-цепи, а затем а-цепи, а в процессе образования клеток, несущих уб-ТКР, - соответственно гены б-и у-цепей. Благодаря тому, что локус генов б-цепей находится в середине локуса генов а-цепей, ни Т-клетка не может одновременно экспрессировать oß-и уб-ТКР. Кроме того, каждая цепь синтезируется только из одной пары гомологичных хромосом, т.е. при экспрессии генов ТКР происходит явление аллельных исключения.

Каждый из локусов Ig/TCR содержит определенное количество V, D и J сегментов, расположенных в определенном порядке: сначала идут повторяющиеся V-сегменты, затем D, если они есть, затем J-сегменты и константный регион (С). Часть генных сегментов является псевдогенами, большинство - функциональными генами, то есть транслируются в белок. Количество вариантов случайных комбинаций генных сегментов в процессе V(D)J рекомбинации определяет комбинативное разнообразие антигенных рецепторов лимфоцитов.

Молекулярный механизм рекомбинации всех семи локусов Ig/TCR идентичный. Эти генные перестройки происходят на ранних этапах дифференцировки лимфоцитов в костном мозге (для В-лимфоцитов) и тимусе (для Т-лимфоцитов) и представляют собой соматическую негомологичную рекомбинацию, в результате которой V, D и J генные сегменты сближаются, а промежуточная последовательность удаляется. Для локусов IGH@, TCRD, TCRB перестройка протекает в два этапа: сначала сближаются D и J сегменты, а затем происходит V-DJ соединение. Для остальных генов перестройка V-J происходит в один этап.

Популяции Т-лимфоцитов.

Среди Т-лимфоцитов различают две фенотипические субпопуляции клеток – CD4+-клeтки и СD8+-клетки. По функциональным характеристикам в популяции Т-лимфоцитов выделяют Т-хелперы гуморального иммунитета, Т-хелперы клеточного иммунитета, Т-супрессоры, Т-цитотоксические клетки. Т-хелперы гуморального и клеточного иммунитета имеют единого предшественника – ТH0-клетки, из которых они генерируются в ходе иммунного ответа.

Несмотря на то, что Т- и В-клетки довольно легко идентифицировать по поверхностным маркерам (Т3 или CD 3 на Т-клетках и поверхностные Ig на В-клетках), следует иметь также представление о наиболее важных дифференцировочных антигенах Т-лимфоцитов человека. Важнейшими из них являются:

1. CD 2 (от англ. Claster of differentiation - кластер дифференцировки) - это антиген, обнаруживаемый на всех зрелых периферических Т-лимфоцитах (идентичен "рецептору эритроцитов барана", именно он обеспечивает образование розеток с эритроцитами барана - методика выявления Т-клеток). CD 2 принимает участие в процессе неспецифической активации Т-клеток, что играет важную роль при созревании клеток в тимусе, т.к. пролиферация тимоцитов индуцируется до начала экспрессии специфического антигенного процесса.

2. CD 3 - это мембраносвязанный белковый комплекс, состоящий из пяти гликопротеинов, связанный с антигенспецифическим рецептором (Ti ). Этот комплекс " CD 3+ Ti " и представляет собой антигенспецифический Т-клеточный рецептор периферических Т-лимфоцитов человека. Связывание антигена, ассоциированного с детерминантами МНС, является специфическим сигналом для активации зрелой Т-клетки. При этом CD 3 участвует в передаче сигнала внутрь клетки. Непосредственным результатом связывания антигена с рецептором является поступление в клетку ионов Са 2+ .

3. CD 4 - антиген гликопротеиновой природы, который экспрессирует примерно на 2/3 периферических Т-лимфоцитов. На этапе созревания клеток в тимусе CD 4 экспрессируется всеми клетками, а в ходе их дифференцировки сохраняется только на субпопуляции, переставшей экспрессировать CD 8-антиген. В периферической крови примерно 5% клеток несут одновременно маркеры CD 4 и CD 8. Зрелые CD 4+-Т-клетки включают Т-лимфоциты, функционально характеризуемые как хелперы и индукторы. При контакте Т-лимфоцитов (Ti / h - индукторов хелперов) с антигенпрезентирующей клеткой CD 4 выступает в роли специфического места связывания детерминант белковых молекул МНС класса II . Особое значение имеет факт связывание молекулой CD 4 оболочечных белков вируса иммунодефицита человека - возбудителя СПИД, что в результате эндоцитоза приводит к проникновению вируса внутрь клеток субпопуляции Ti / h .

4. CD 8 - антиген, который экспрессируется примерно на 1/3 периферических Т-клеток, созревающих из CD 4+/ CD 8+-Т-лимфоцитов. Субпопуляция CD 8+-Т-клеток включает цитотоксические и супрессорные Т-лимфоциты. При контакте с клеткой-мишенью CD 8 выступает в роли рецептора неполиморфных детерминант белков МНС класса I .

5. Антиген CD 45 R присутствует примерно на 50% Т-клеток (он экспрессируется также В-клетками и моноцитами). Клетки CD 4+/ CD 45 R идентифицированы как индукторы супрессоров, что дает возможность косвенно определять также функционально активные индукторы хелперов.

6.Антиген CD 25 - гликопротеин, идентифицированный как низкоаффинный рецептор к интерлейкину-2 (IL -2). Совместно с белком75К антиген CD 25 образует высокоаффинный рецептор ИЛ-2. CD 25 экспрессируется на активированных Т-лимфоцитах.

«Тяжелейший аутотоксикоз» - такой термин был введен около ста лет назад известным немецким врачом-бактериологом для описания патологического состояния, при котором иммунная система человека «атакует» его же собственные органы и ткани. Эрлих полагал, что с биологической точки зрения в аутоиммунности (еще одно введенное им определение) нет ничего абсурдного, когда она находится под строжайшим контролем. Однако медицинское сообщество не приняло столь неоднозначной идеи. В самом деле, зачем природе встраивать в организм человека механизм, способный разрушать своего носителя?

Однако врачи время от времени сталкивались с заболеваниями, которые попадали под концепцию Эрлиха. Среди них, . Выяснилось, что у подобных больных обычно нарушена функция особых лейкоцитов, известных как CD4 + -T-лимфоциты (они названы так потому, что созревают в тимусе - железе, расположенной в грудной клетке чуть выше сердца, и несут на своей поверхности молекулы гликопротеина CD4). В норме они играют роль «старших офицеров», которые отдают команду другим клеткам иммунной системы к наступлению на вторгшихся в организм врагов - болезнетворных микроорганизмов, но иногда направляют оружие против органов и тканей собственного тела.

Эрлих оказался прав и в другом: недавно идентифицированы клетки, специализирующиеся на возвращении на путь истинный вышедшей из повиновения иммунной системы. Они получили название регуляторных Т-клеток. Будучи частью популяции CD4 + -T-клеток, они поддерживают мир и согласие между иммунной системой и организмом. Кроме того, выяснилось, что им свойственна не только миротворческая функция: они также влияют на реакцию иммунной системы на проникшие в организм инфекционные агенты, опухолевые клетки, трансплантированные органы, клетки плода при наступлении беременности и т. д. Если удастся выяснить, как они выполняют свои обязанности, и почему их работа иногда дает сбой, исследователи получат возможность контролировать деятельность этих регуляторов и при необходимости подавлять иммунную активность.

Исследователи обнаружили, что для обеспечения самотолерантности (способности удерживать иммунную систему в рамках) принимается множество мер предосторожности. Первая линия обороны, во всяком случае, в том, что касается Т-клеток, располагается в тимусе. Здесь созревшие Т-клетки проходят серьезный «курс обучения» и настраиваются на крайне слабую реакцию на здоровые клетки организма-хозяина. Клетки, не поддающиеся «дрессировке», отбраковываются. Однако ни одна система не застрахована от ошибок, и некоторое количество аутоагресивных Т-клеток ускользает от контроля. Попадая в кровоток и лимфу, они создают угрозу запуска аутоиммунной реакции.
Кровь и лимфа представляют собой вторую линию обороны.

Ответственный за распознавание процессированных антигенов , связанных с молекулами главного комплекса гистосовместимости (ГКГ, англ. MHC ) на поверхности антигенпредставляющих клеток . ТКР состоит из двух субъединиц, заякоренных в клеточной мембране, и ассоциирован с мультисубъединичным комплексом CD3 . Взаимодействие ТКР с молекулами ГКГ и связанным с ними антигеном ведёт к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

Структура

ТКР представляет собой гетеродимерный белок, состоящий из двух субъединиц - α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью .

По своей структуре субъединицы ТКР относятся к суперсемейству иммуноглобулинов . Каждая из субъединиц образована двумя доменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена , презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счёт необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр антигенов.

Второй домен - константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом расположен остаток цистеина , с помощью которого между двумя цепями ТКР образуется дисульфидная связь.

Субъединицы ТКР агрегированы с мембранным полипептидным комплексом CD3 . CD3 образован четырьмя типами полипептидов - γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют схожую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путём альтернативного сплайсинга .

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией ТКР, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток , а ТКР – положительно заряженный. За счёт электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ) 2 +γ+δ+ε 2 +ζ 2 .

ТКР, состоящие из αβ-цепей и γδ-цепей, весьма близки по структуре.

Механизмы активации Т-клеток

Основной функцией комплекса ТКР является распознавание специфического связанного антигена и запуск соответствующего клеточного ответа. Механизм трансдукции сигнала, благодаря которому Т-клетка вызывает этот ответ при контакте с её уникальным антигеном, называется активацией Т-клетки. В процессе активации Т-клеток путём так называемой трансмембранной сигнализации обычно участвуют расположенные под липидным бислоем киназы семейства Src , которые осуществляют обратимое фосфорилирование остатков тирозина в активационных цепочках иммунорецепторов - ITAM во внутриклеточных доменах CD3 и