Колебательный контур. Повышение Q контура Как яндекс определяет добротность

В статье расскажем что такое колебательный контур. Последовательный и параллельный колебательный контур.

Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный .

Основная радиоэлементная база колебательного контура : Конденсатор, источник питания и катушка индуктивности.

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / Х Σ , где Х Σ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки X L и конденсатора Х C от циклической (круговой) частоты ω , а также график зависимости от частоты ω их алгебраической суммы Х Σ . График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.

Из графика видно, что на некоторой частоте ω=ω р , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:

На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R , подключенного к идеальному генератору гармонического напряжения с амплитудой U . Полное сопротивление (импеданс) такой цепи определяется: Z = √(R 2 +X Σ 2) , где X Σ = ω L-1/ωC . На резонансной частоте, когда величины реактивных сопротивлений катушки X L = ωL и конденсатора Х С = 1/ωС равны по модулю, величина X Σ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R . При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение U L = U С = IX L = IX С .

На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений X L и X С .Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q . Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = Х L = Х C при ω =ω р . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C) . Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) W L = (LI 2)/2 и конденсатором (энергия электрического поля) W C =(CU 2)/2 . Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».

Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R .

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R , L и C

Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R , где R -сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I 2 R . Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.

Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.

При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).

Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности B L = 1/ωL , конденсатора В C = -ωC , а также суммарной проводимости В Σ , этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты X Σ = 1/B Σ , эта кривая, изображённая на следующем рисунке, в точке ω = ω р будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление R экв = Q·ρ . На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ω р его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.

Добро́тность - свойство колебательной системы, определяющее полосу резонанса и показывающее, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.

Общая формула для добротности любой колебательной системы:

· - резонансная частота колебаний

· - энергия, запасённая в колебательной системе

· - рассеиваемая мощность.

Например, в электрической резонансной цепи энергия рассеивается из-за конечного сопротивления цепи, в кварцевом кристалле затухание колебаний обусловлено внутренним трением в кристалле, в объемных электромагнитных резонаторах теряется в стенках резонатора, в его материале и в элементах связи, в оптических резонаторах - на зеркалах.

Для Колебательного контура в RLC цепях:

где , и - сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

6) Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Пусть совершаются два гармонических колебания одного направления и одинаковой частоты

(4.1)

Уравнение результирующего колебания будет иметь вид

Убедимся в этом, сложив уравнения системы (4.1)

Применив теорему косинусов суммы и сделав алгебраические преобразования:

Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения

(4.3)

Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:

Подставляя (4.3) в (4.2), получим:

Или окончательно, используя теорему косинусов суммы, имеем:

Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.

В зависимости от разности фаз (φ2-φ1):

1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний

Биение

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.


Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю.

Экспериментальный Q-метр

Lloyd Butler, VK5BR
В статье описывается фактор добротности Q, методика измерения добротности, индуктивности, ёмкости с использованием Q-метра и разработка экспериментального измерителя Q.

Введение

Много лет Q-метр (измеритель добротности) остаётся нужным прибором в лабораториях, занимающихся исследованием радиочастотных схем. В современных лабораториях Q-метр заменяют, в большинстве случаев, более экзотичные (и более дорогие) приборы для измерения импедансов и сегодня уже невозможно найти производителя, который бы всё ещё выпускал Q-метры. Для радиолюбителя Q-метр является очень важной частью необходимого набора измерительной аппаратуры, и автор излагает несколько своих соображений о том, как можно сделать для своей лаборатории простой Q-метр. Для тех, кто незнаком с этим устройством, включены некоторые вводные понятия о добротности Q и её измерении.

Что такое добротность (Q) и как её измеряют?

Фактор Q или добротность катушки индуктивности обычно выражается как отношение её последовательного реактивного сопротивления к активному. Мы также можем выразить добротность конденсатора через отношение его последовательного реактивного сопротивления к активному, хотя конденсаторы, обычно, характеризуются фактором D или рассеянием, который является величиной обратной Q.

Настроенный контур при резонансе характеризуется величиной добротности (которая обозначается) Q. В этом случае, Q равна отношению реактивного сопротивления индуктивного или ёмкостного характера к полному последовательному сопротивлению потерь в резонансном контуре. Чем больше сопротивление потерь и ниже добротность Q, тем больше потери мощности на каждом цикле генерации в резонансном контуре и, отсюда, больше мощность, необходимая для возникновения генерации.

Другим способом добротность Q можно вывести так:

Q = fo/Δf, где fo - резонансная частота, Δf полоса по уровню - 3 дБ
(См. Примечание)

Порой мы употребляем выражение: “нагруженная добротность”, например, в случае контуров передатчика, и, в этом случае, активное сопротивление для расчёта величины добротности (Q) является величиной последовательного активного сопротивления ненагруженного резонансного контура плюс дополнительное активное сопротивление потерь, отражённое, в свою очередь, обратно в контур из связанной с ним нагрузки.

Существуют и другие способы выражения Q. Добротность может быть выражена как отношение эквивалентного параллельного (контуру) активного сопротивления к реактивному сопротивлению индуктивного или ёмкостного характера. Последовательное сопротивление потерь может быть преобразовано в эквивалентное параллельное сопротивление по следующей формуле:

R(shunt) = R (series). (Q² + 1)

Наконец, Q или добротность резонансного контура равна фактору увеличения напряжения и Q может также быть выражена отношением напряжения, развиваемого на реактивных элементах к напряжению, поданному последовательно с контуром, для получения действующего напряжения. Для измерения добротности, Q-метры используют, именно, этот принцип.

Основная схема Q-метра показана на Рис. 1. Выходные зажимы служат для подключения испытуемых индуктивностей (Lx), которые в схеме контура на резонансную частоту настраиваются с помощью КПЕ (C). Зажимы также предусмотрены и для дополнительного подключения емкостей (Cx), если это необходимо. Резонансный контур возбуждается от перестраиваемого источника сигнала, который развивает напряжение на резисторе, включенном последовательно с контуром. Резистор должен иметь малое, по сравнению с сопротивлением потерь измеряемых компонентов, сопротивление, такое, чтобы им можно было пренебречь. Необходимая величина сопротивления составляет малую долю Ома. Измерения производятся для установления величины подводимого напряжения переменного тока на последовательно включенном резисторе и величины выходного переменного напряжения на зажимах КПЕ настройки. Для измерения на выходе необходимо применять схему с высоким входным импедансом, чтобы не нагружать резонансный контур измерительной схемой.

Рис. 1. Структурная схема Q-метра.
При резонансе Lx и Cx, Q = V2/V1
*Измеритель V2 откалиброван для считывания напряжения на конденсаторе С.

Добротность измеряется при настройке генератора сигналов и/или установке КПЕ настройки прибора в положение резонанса контура, соответствующее максимальному выходному напряжению. Добротность Q рассчитывается как отношение выходного напряжения на резонансном контуре к напряжению, поданному на него. На практике, уровень источника сигнала (генератора сигнала) настраивается на калибрационную точку по шкале измерителя, который измеряет приложенное напряжение, а Q прямо считывается с калиброванной шкалы прибора измеряющего выходное напряжение контура.

Некоторые применения Q-метра

Q-метр может быть применён для многих целей. Как следует из его названия, он может применяться для измерения добротности Q и обычно применяется при измерении добротности катушек индуктивности. Поскольку внутренний конденсатор имеет воздушный диэлектрик, его сопротивление потерь ничтожно по сравнению с таковым у катушек индуктивности и поэтому добротность измеряется у них.

Значение Q может измеряться в значительных пределах у разных типов катушек и в разных диапазонах частот. Миниатюрные катушки промышленного изготовления, такие как Siemens B78108 или типов Lenox-Fugal Nanored, выполненные на ферритовых сердечниках и работающие на частотах до 1 МГц, имеют типовую добротность Q в районе от 50 до 100. Бескаркасные катушки, намотанные с шагом, такие как контуры на выходе передатчика и работающие на частотах выше 10 МГц имеют ожидаемое значение Q в области 200…500. У некоторых катушек добротность довольно низка и составляет на некоторых частотах 5…10, такие катушки обычно не применяют в избирательных системах или узкополосных фильтрах. Неоценимую помощь окажет здесь Q-метр.

(В своё время, ко мне обратился один коротковолновик, у которого во вновь построенном трансивере не настраивался полосовой диапазонный фильтр. Добротность его катушек оказалось настолько низкой, что поймать какие-либо резонансы оказалось невозможным. При ближайшем рассмотрении оказалось, что катушки ПФ были намотаны проводом не ПЭЛШО, а ПЭЛШКО, т.е., константановым! Добротность катушек сильно зависит и от активного сопротивления провода, чем оно меньше, тем выше добротность катушки при прочих равных условиях. Будь тогда под руками Q-метр, не пришлось бы долго ломать голову и анализировать причину – UA9LAQ).

Конденсатор настройки (C) Q-метра имеет градуированную шкалу в пикофарадах (пФ), так что в союзе с калиброванным сигнал - генератором, с которого напряжение для производства измерений подаётся на Q-метр, может быть определено и значение индуктивности (Lx). Колебательный контур просто настраивается в резонанс на частоту сигнал-генератора или изменением частоты последнего или/и с помощью КПЕ в Q-метре (или внешнего в контуре) по максимуму напряжения, который регистрируется на измерителе прибора, искомая индуктивность (Lx) затем высчитывается по известной формуле:

Lx = 1/4π²f²C

Если взять L, мкГн, C, пФ и f, МГц, то формула превратится в:

25330/f²C

Другим применением Q-метра может быть измерение значений ёмкости небольших (в смысле ёмкости) конденсаторов. При условии, что ёмкость измеряемого конденсатора меньше максимальной ёмкости внутреннего КПЕ, её очень легко измерить. Во-первых, подключаемый конденсатор резонирует с выбранной индуктивностью на определённой частоте, - определяется при настройке напряжением от сигнал-генератора, при КПЕ настройки прибора, установленном на отметку минимума его ёмкости по калиброванной шкале. Затем, испытуемый конденсатор отключается, при той же частоте от сигнал-генератора, КПЕ настройки устанавливается в положение резонанса вновь (увеличением его ёмкости). Разница в ёмкости между двумя значениями по шкале КПЕ и будет равна ёмкости подключаемого для определения ёмкости конденсатора (т. е., измерение ёмкости производится методом замещения в резонансном контуре – UA9LAQ). Большие значения емкостей могут быть измерены при смене частоты сигнал-генератора для достижения резонанса и использовании соответствующей формулы для резонанса.

Не только выбор “неважной” катушки индуктивности приводит к низкой добротности контура, некоторые типы конденсаторов (и экземпляры), применяемые в контурах, имеют большое сопротивление потерь, что также приводит к снижению добротности контура. Небольшие керамические конденсаторы часто используют в резонансных контурах, но многие из них имеют высокие сопротивления потерь, изменяющиеся в широких пределах внутри одного типа. Если необходимо, чтобы в высокодобротном резонансном контуре были применены керамические конденсаторы, благоразумно, подобрать их по наименьшему сопротивлению потерь и Q-метр может оказать здесь неоценимую услугу. Чтобы это осуществить, необходимо взять высокодобротную катушку (с Q не менее 200) и подключив к прибору, ввести её в резонанс с имеющимся в составе Q-метра КПЕ (C), а затем, с отдельными, взятыми для проверки конденсаторами, подключаемыми параллельно. Большая потеря добротности контура, при подключении конденсаторов, позволит быстро выявить экземпляры непригодные для использования.

Распределённая ёмкость катушки

Прямое измерение добротности катушек индуктивности, упомянутое выше, основано на схеме, состоящей из двух компонентов: индуктивности и ёмкости. Катушки также имеют распределённую (межвитковую) ёмкость (C d), и, если эта ёмкость составляет значительную часть от настроечной (сосредоточенной), то мы получим меньшее значение добротности контура, чем ожидали. Большое значение распределённой ёмкости – обычное явление, когда мы имеем значение с многовитковыми катушками, намотанными виток к витку и многослойными катушками.

Действительное значение добротности может быть вычислено из Q e , как явствует из следующего:

Q = Q e (1 + C d /C)
где C d = распределённая ёмкость
C = ёмкость настройки

Ошибка в значении Q уменьшается, при резонансе с большим значением ёмкости настроечного конденсатора, или распределённая ёмкость может быть измерена и подставлена в вышеприведённую формулу. Два метода измерения распределённой ёмкости описаны в "Boonton Q Meter Handbook". Самый простой из них считается довольно точным для распределённых емкостей превосходящих 10 пФ и он описывается таким образом:

1. С помощью конденсатора настройки прибора (C) установите значение C1 (скажем, 50 пФ), введите колебательный контур, образованный совместно с образцовой индуктивностью, в резонанс подстройкой частоты сигнал - генератора.

2. Установите частоту сигнал - генератора на половинную от частоты резонанса и снова настройте контур в резонанс, вращая ротор С для получения нового значения ёмкости С2.

3. Распределённую ёмкость посчитайте по формуле: C d = (C2 -4C1) /3

Другим проявлением распределённой ёмкости в катушке индуктивности является получение величины индуктивности (вычисленной по установкам конденсатора настройки и сигнал - генератора) выше, чем есть на самом деле. И, снова, значение ошибки может быть уменьшено, если использовать большее значение ёмкости настроечного конденсатора С и/или добавить в расчёте к С, вычисленную отдельно ёмкость C d.

Экспериментальный экземпляр

От небольшой схемки и экспериментов переёдём к практической схеме Q-метра, показанной на Рис. 2. Источник сигнала здесь не приводится, так как лаборатория экспериментатора в области радио немыслима без таких приборов как сигнал – генератор, ГСС и их можно использовать с Q-метром в качестве приставки. Добавление источника сигнала внутрь корпуса (как это было бы в случае Q-метра промышленного изготовления) приведёт к усложнению схемы и размеров устройства, что нежелательно, особенно, на начальной стадии конструкторской деятельности.

Рис. 2. Схема Q- метра.
К выводам 1-4 подключаются тестируемые индуктивности Lx и ёмкости Cx.
R13 (0,2 Ом) состоит из пяти 1-омных резисторов, соединённых параллельно. Для калибровки установите уровень сигнала ГСС на середину шкалы М1.

В разработке схемы, наибольшей проблемой явилось: как измерять напряжение источника сигнала на сопротивлении в малые доли Ома. Первой мыслью было: использовать многопроводный тороидальный понижающий трансформатор, подключаемый к источнику с высоким сопротивлением. (В таком трансформаторе коэффициент связи высок, а индуктивность утечки (leakage inductance) - низка). Но, в этом случае, индуктивность утечки, отражённая последовательно со вторичной обмоткой оказывается, всё-таки, большой и от идеи пришлось отказаться.

Другой идеей было: воспользоваться низким сопротивлением источника мощного повторителя напряжения для прямого инжектирования сигнала в измерительный контур. Для этих целей была использована схема повторителя, который обозначен как V2-V3 на Рис. 2. Этот тип схемы имеет широкую полосу пропускаемых частот с очень низким сопротивлением источника и был использован ранее как буферный для передачи видеосигналов в низкоомную линию передачи. Для достижения низкого сопротивления источника, повторитель установлен в режим со значительным током коллектора – 100 мА. Отсюда транзисторы V2 и V3 в корпусах ТО5 довольно сильно греются. Схема работает хорошо на низких частотах, а на высоких (10…30 МГц) сопротивление источника начинает расти, что сказывается на значениях Q, которые становятся ниже ожидаемых.

В схеме Рис. 2 применён каскад повторителя напряжения, но каскад использован для получения напряжения на резисторе R13, сопротивление которого составляет лишь доли Ома, о чём уже упоминалось ранее. Значение сопротивления действительно составляет 0,2 Ом. Конечно же, повторитель не может работать прямо на такую низкоомную нагрузку, которая подключается через резисторы R11 и R12 (сумма сопротивления которых составляет 25 Ом), так что выходное напряжение в 125 раз меньше инжектированного в резонансный контур.

Предоконечный каскад усилителя мощности раскачивается эмиттерным повторителем (V1). У него высокое входное сопротивление и, отсюда, сопротивление нагрузки, прилагаемое к внешнему источнику сигнала, в основном, определяется включенными параллельно резисторами Rl и R3 (примерно 2300 Ом).

Тестируемая индуктивность (Lx) присоединяется к зажимам 1 и 2, а внешняя ёмкость (Cx), если нужно, присоединяется к зажимам 3 и 4. Настройка осуществляется КПЕ Ca, обычным секционным конденсатором от радиовещательного приёмника, с секциями соединёнными параллельно для получения общей максимальной ёмкости порядка 800 пФ.

Высокоимпедансный вход вольтметру обеспечивает каскад на полевом транзисторе V4, включенный истоковым повторителем, пиковый детектор (C6, D1, R17, C8, R20) и операционный усилитель N1-A обеспечивают работу прибора с максимальным током отклонения стрелки 100 мкА. Второй ОУ NI-B в корпусе uA747 обеспечивает сдвиг напряжения для N1-A.

Переключатель (S1) имеет три положения. Первое положение, обозначенное CAL, используется для установки уровня сигнала, который устанавливается по отклонению стрелки прибора М1 в среднее положение. (На входе V1 уровень сигнала должен составлять порядка 1 Врр). Если уровень сигнала установлен правильно, положение 2 переключателя обеспечивает прямое считывание Q от 0 до 100 по шкале прибора, а положение 3 переключателя обеспечивает прямой отсчёт Q от 0 до 500. Для низких значений Q калибрационный уровень в положении 1 переключателя устанавливается на всю шкалу прибора, так что в положении 2 переключателя можно измерять величины добротности Q в пределах 0…50.

Уровни сигналов, подаваемых на схему вольтметра переменного тока пропорционализированы так, чтобы находиться над нелинейным участком диодных характеристик, но в пределах размаха напряжения сигнала, обусловленного напряжением питания. В положении 1 переключателя (CAL)- “Калибровка” усиление N1-A по напряжению равно 2, в положении 2 – 5, в положении 3 – 1.

Напряжение питания выбрано равным 12 В, но точное значение его некритично. Потребляемый по питанию ток достаточно велик (примерно 100 мА) из-за большого потребления повторителя на V2-V3.

Работа

Сравнивая значения Q со значениями, полученными на других приборах, обнаруживаем, что Q-метр довольно точен и вполне подходит для радиолюбительских измерений. Для очень больших значений добротности (примерно, 400), при Са, установленном на минимум, значение добротности получается на немного ниже. Это происходит из-за потерь в резисторе R14, соединённым последовательно со входной ёмкостью V4. (Получаемый результат может быть увеличен исключением R14, но, без него, V4 склонен к нестабильности, когда Са подключен непосредственно к его входу). Для большего значения Ca, входная ёмкость V4 маскируется, так как ошибка, в этом случае, составляет меньший процент и меньше заметна.

Точность измерения индуктивности и ёмкости обусловлена точностью источника сигнала и точностью градуировки шкалы конденсатора прибора. Для того, кто заинтересуется изготовлением прибора, калибровку шкалы можно провести прямым измерением ёмкости с использованием емкостного моста или другого Q-метра. Другой метод – использование калибровки источника сигнала в союзе с калиброванной катушкой индуктивности. Для различных положений ротора КПЕ, частота источника сигнала устанавливается так, чтобы получить резонанс в контуре с калиброванной катушкой индуктивности, затем, ёмкость высчитывается по формуле. Приняв значение индуктивности эталонной катушки и частоту сигнал-генератора за прецизионные величины, мы получим, таким образом, наверное, самый лучший способ, так как это учитывает и дополнительную ёмкость проводов и активную входную ёмкость V4.

Устройство работало отлично в диапазоне частот 100 кГц…40 МГц. Попытка использовать устройство на частотах выше 40 МГц приводила к получению ложных результатов, но эксплуатацию прибора в УКВ-диапазоне, наверное, можно осуществить, применив соответствующий монтаж, детали, возможно, поправочные градуировочные таблицы.

Примечания по сборке

Транзисторы V2-V3 (типа 2N2218) имеют максимальную рабочую частоту 250 МГц и рассеиваемую мощность 680 мВт при 50 градусах Цельсия. Они могут быть заменены другими транзисторами с идентичными характеристиками. Таким же образом, транзисторы: V1 (2N3563) и V4 (FET (ПТ) - 2N3819) могут быть заменены другими малосигнальными транзисторами, имеющими высокую граничную частоту.

Итоги

В статье представлены идеи о том, как построить простой Q-метр и как его запустить в дело. О других применениях этого универсального прибора можно прочитать на страницах справочников, таких, например, как подготовленные Boonton Radio Corporation.

Литература:

1. Manual of Radio Frequency Measurements for the Q Meter. Boonton Radio Corporation.

Приложение. Предусилитель источника сигнала

Экспериментальный Q-метр, схема которого приведена выше, требует уровень входного сигнала генератора около 1 Врр. Не все сигнал - генераторы обеспечивают такой уровень на своём выходе, для работы с такими генераторами, на сигнальном входе прибора требуется включение предусилителя.

Рис. 3. Предусилитель измерителя добротности (100 кГц…40 МГц).

Широкополосный усилитель, показанный на Рис. 3, обеспечивает усиление примерно 10 на протяжении рабочего диапазона Q-метра, равного 100 кГц…40 МГц. Установленный на входе Q-метра он увеличивает чувствительность его входа до примерно 0,1 Врр, что расширяет парк подключаемых источников сигнала, генераторов. В приборе нет регуляторов усиления, так как обычно в генераторах таковые имеются: регулируемые аттенюаторы для установки уровня выходного сигнала.

Для тех, кто будет повторять Q-метр: предусилитель явится полезным добавлением при работе с сигнал – генераторами, имеющими низкий уровень выходного напряжения.

Модификации схемы РЧ-делителя

Схема делителя в оригинале на Рис. 1 состоит из R11, R12 и R13. С помощью этого делителя производится деление РЧ напряжения на 125, так что напряжение на резисторе R13 (0,2 Ома) составляет 1/125 от напряжения поступающего с усилителя мощности. Всё это прекрасно работает на низких частотах, но с ростом частоты, фактор сдвига (смещения) уменьшается (частотная зависимость делителя напряжения в союзе с соединительными проводами – UA9LAQ), что даёт завышение показаний величины добротности Q, по отношению к действительным.

Объяснение этому заключается в следующем: схема от вывода 1, через R13 к выводу 3 является коротким проводником, который обладает конечной величиной индуктивности. Если мы примем длину проводника, равной 5 см, то его индуктивность будет равна примерно 0,02…0.03 мкГн, в зависимости от диаметра проводника. Если эта индуктивность имеет небольшую величину, то её реактивное сопротивление на частотах 6…8 МГц составит примерно 1 Ом. Совершенно ясно, что такое высокое реактивное сопротивление, включенное последовательно с резистором R13 сопротивлением 0,2 Ом, увеличивает пропорцию напряжения на выводах 1 и 3 с ростом частоты.

Чтобы нивелировать этот эффект, была проведена модификация схемы, показанная на Рис. 4. Идея заключается в создании противополя вокруг R13 током, текущим по нему, при этом, имеющаяся индуктивность уничтожается (компенсация индуктивности, вроде компенсации сопротивления соединительных проводов с акустическими системами в УЗЧ, частный случай – UA9LAQ). Чтобы получить поле достаточной величины, три последовательно соединённых проводника, несущих входной ток, прикреплены к пяти параллельно соединённым резисторам, образующим R13 сопротивлением 0,2 Ом.

Другим дополнением является резистор R25 сопротивлением 43 Ом. Провода, свёрнутые вокруг R13, образуют катушку, и резистор R43 добавляется, чтобы снизить Q (добротность) этой катушки и предотвратить нестабильность в цепях усилителя, которая появляется, если не добавить резистор R25.

Проверено, в Q-метре отношение смещения сохранялось, практически неизменным до 40 МГц, с небольшими колебаниями в районе частот 20…30 МГц. Модификация значительно увеличивает точность прямого измерения Q.

Рис. 4. Модификации схемы РЧ делителя

Q – метр у меня всё ещё трудится, но для повышения точности установки частоты, я подключаю к сигнал - генератору (ГСС) частотомер. Контур вводится в резонанс и прибор M1 устанавливается на последнюю отметку шкалы (полная шкала) путём регулировки напряжения, поступающего от ГСС. Частоты устанавливаются, затем, по показаниям прибора М1 на уровне 0,7 от максимума по одну и другую сторону от резонансной, их значения считываются со шкалы частотомера и записываются. Отношение центральной частоты (резонансной) к разнице между двумя боковыми (записанными по уровню 0,7) высчитывается как Q.

(Ко мне приходят письма с просьбой выдать универсальную формулу для подсчёта индуктивности катушек, так как, всё чаще, в описаниях конструкций даются не намоточные данные, а индуктивности этих элементов схем. Отвечаю, что универсальной формулы не существует, так как индуктивность катушки зависит от многих факторов и, пользуясь моментом, хотел бы предложить использовать вышеописанный прибор для предварительной подгонки катушек, выполненных из имеющихся у Вас материалов, с контурными конденсаторами на нужные Вам частоты – UA9LAQ).

(Из австралийского журнала “Amateur Radio” за ноябрь 1988 г)

Свободный перевод с английского с разрешения автора: Виктор Беседин (UA9LAQ) [email protected]
г. Тюмень апрель, 2005 г

Добротность колебательной системы

отношение энергии, запасённой в колебательной системе, к энергии, теряемой системой за один период колебания. Добротность характеризует качество колебательной системы (См. Колебательные системы), т.к. чем больше Д. к. с., тем меньше потери энергии в системе за одно колебание. Д. к. с. Q связана с логарифмическим Декремент ом затухания δ; при малых декрементах затухания Q ≈ π/δ. В колебательном контуре с индуктивностью L , ёмкостью C и омическим сопротивлением R Д. к. с.

где ω - собственная частота контура. В механической системе с массой m , жёсткостью k и коэффициентом трения b Д. к. с.

Добротность - количественная характеристика резонансных свойств колебательной системы, указывающая, во сколько раз амплитуда установившихся вынужденных колебаний (См. Вынужденные колебания) при Резонанс е превышает амплитуду вынужденных колебаний вдали от резонанса, т. е. в области столь низких частот, где амплитуду вынужденных колебаний можно считать не зависящей от частоты. На этом свойстве основан метод измерения Д. к. с. Величина добротности характеризует также и избирательность колебательной системы; чем больше добротность, тем у́же полоса частот внешней силы, которая может вызвать интенсивные колебания системы. Экспериментально Д. к. с. обычно находят как отношение частоты собственных колебаний к полосе пропускания системы, т. е. Q = ω/Δω. Численные значения Д. к. с.: для радиочастотного колебательного контура 30-100; для камертона 10000; для пластинки пьезокварца 100000; для объёмного резонатора СВЧ колебаний 100-100000.

Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Горелик Г. С., Колебания и волны, 2 изд., М., 1959.

В. Н. Парыгин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Добротность колебательной системы" в других словарях:

    Большой Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше добротность колебательной системы, тем меньше потери энергии в ней за период.… … Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше Д. к. с., тем меньше потери энергии в ней за период. Добротность колебат.… … Естествознание. Энциклопедический словарь

    Величина, характеризующая резонансные свойства линейной колебат. системы; численно равна отношению резонансной частоты со к ширине резонансной кривой Dw на уровне убывания амплитуды в?2 раза: Q=w/Dw. Принято также выражать Д. колебат. системы… … Физическая энциклопедия

    Современная энциклопедия

    Добротность - колебательной системы, характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает их амплитуду вдали от резонанса. Чем выше добротность системы, тем меньше потери энергии в ней … Иллюстрированный энциклопедический словарь

    Добротность характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости… … Википедия - Собственная добротность колебательной системы. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002] Тематики электросвязь, основные понятия EN unloaded Q … Справочник технического переводчика

В основе любого радиоприемника лежит принцип избирательного воспроизведения сигнала, модулированного определенной несущей частотой, которая, в свою очередь, определяется резонансом колебательного контура, являющегося основным элементом схемы ресивера. От того, насколько правильно будет выбрана эта частота, зависит качество принимаемого сигнала.

Избирательность, или селективность приемника определяется тем, насколько сигналы, мешающие устойчивому приему, будут ослаблены, а полезные - усилены. Добротность контура - это величина, объективно демонстрирующая в числовом выражении успешность решения этой задачи.

Резонансная частота контура определяется по формуле Томпсона:

f=1/(2π√LC), в которой

L - величина индуктивности;

Для того чтобы понять, каким образом происходят колебания в контуре, следует разобраться в том, как он работает.

И емкостная, и индуктивная нагрузки препятствуют возникновению электрического тока, но делают это в противофазе. Таким образом, они создают условия для возникновения колебательного процесса, примерно так же, как это происходит на качелях, когда двое катающихся толкают их в разные стороны попеременно. Теоретически, меняя величину емкости конденсатора или катушки, можно добиться того, что резонансная частота контура совпадет с несущей частотой передающей радиостанции. Чем они больше будут отличаться, тем менее качественным будет сигнал. На практике приемник настраивают, меняя

Весь вопрос состоит в том, насколько острым будет пик на графике частотной характеристики приемного устройства. Именно так зрительно можно понять, как будет усилен полезный сигнал, насколько подавлены помехи. Добротность контура и является тем параметром, который определяет избирательность приема.

Определяется она по формуле:

Q=2πFW/P, где

F - резонансная частота контура;

W - энергия в колебательном контуре;

P - мощность рассеивания.

Добротность контура при параллельном включении конденсатора и индуктивности определяется по такой формуле:

С величинами индуктивности и емкости конденсатора все понятно, а что касается R, то оно напоминает, что кроме катушка имеет и активную составляющую. Поэтому схему контура часто изображают, включая в нее три элемента: емкость С, индуктивность L и R.

Добротность контура является величиной, обратно пропорциональной скорости затухания в нем колебаний. Чем она больше, тем медленнее происходит релаксация системы.

На практике самым значительным фактором, влияющим на добротность контура, является качество катушки, зависящее от ее сердечника, от числа витков, степени изолированности провода, и от ее сопротивления, а также от потерь при прохождении токов высокой частоты. Поэтому для регулировки частоты приема обычно применяют конденсаторы переменной величины, представляющие собой два набора пластин, входящих и выходящих друг из друга при вращении. Такая система характерна для практически всех нецифровых радиоприёмников.

Впрочем, и в ресиверах с цифровой настройкой также есть свои колебательные контуры, просто их резонансная частота меняется иначе.